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Foreword 
 
This Handbook was compiled to assist the users and participants of the course “World of Development and the Role of 
Statistics”. The course is Web based and has the goal to make participants interested in the history and selected essentials of 
development policy as well as to make professional statisticians be aware of the different actors, scenarios and milestones in this 
area. No expertise of statistics is expected of the participants and the exercises are prepared that basic knowledge of EXCEL 
and reading and understanding scientific textbooks should suffice for a successful participation. 
 
It may be that a participant might want to know more of statistics and misses a more systematic approach to the subject, because 
introduction to probability and sampling, to name just two subjects have been limited to the very basic. Here comes a more 
systematic approach and deals more with statistics theory and less with “World of Development”. This part of the Handbook 
concentrates on Regression Theory because most what has been said in the WBT about regression has close links to the other 
subjects. The Regression theory will be discussed using a very simple example of yield influenced by fertilizer input and rainfall, 
something very similar to what we use in the WBT.  The Factor and Principal Component Analysis are rather specific cases of 
the general Regression Model. Again a summary of the different techniques and tools of methods will be exposed and another 
example is exposed rather verbally than technically. Factor analysis is by no means the “best” method for analysis complex and 
abundant data material: Linear discriminate analysis,  ANOVA and cluster analysis are others to name a few and would merit to 
be included into this course. However the outcome and the relevant example determined the choice for Factor analysis. So 
principal emphasis is laid on explaining the theory and the reason why to use it without getting too theoretical, I hope.     
 
Still this handbook would not substitute a statistics course. Many of the contents have been inspired by two great textbooks [6] 
and [37] and which are standards of teaching statistics to students and academics. The references you will find in the 
Bibliography. Please study these text books, especially the very practice related exercises which may help to understand many 
details and subject of statistics better. As a final word from the author of the Web based training let me summarize: Statistics 
should be regarded for a vast majority as a supporting science, except for those who deal with it for scientific purposes. The great 
use and benefit is that reality can be simplified and answers been given to the questions like: Which are the outcomes of my 
policy, how do I measure well-being in my region, which measures have proven to be successful to reduce poverty, which groups 
of people experience the highest resilience against economic changes with more authority than a rule of thumb. Never forget that 
there is not only one response to these questions and not all responses given are equally valid and scientifically based. The 
approach of the WBT should help to pick the better choice. 

Introduction 
 
The word "statistics" originally meant the collection of population and economic information vital to the state. From that modest 
beginning, statistics has grown into a scientific method of analysis that now is applied to all the social and natural sciences. The 
present aims and methods of statistics are best illustrated by a familiar example. 
 
Before every presidential election, the pollsters try to pick the winner; specifically, they try to guess the proportion of the 
population that will vote for each candidate. Clearly, canvassing all voters would be an impossible task. As the only alternative, 
pollsters survey a sample of a few thousand in the hope that the sample proportion will constitute a good estimate of the total 
population proportion. This is a typical example of statistical inference or statistical induction: the (voting) characteristics of an 
unknown population are inferred from the (voting) characteristics of an observed sample. 
 
As any pollster will admit, it is an uncertain business. To be sure of the population, we have to wait until Election Day, when all 
votes are counted. Yet if the sampling is done fairly and adequately, we can have high hopes that the sample proportion will 
be close to the population proportion. This will allow us to estimate the unknown population T proportion from the observed 
sample proportion P, as follows: 
T = P ± a small error 
With the crucial questions being, "How small is this error?" and "How sure are we that we are right?" Since this typifies the 
very core of this handbook, we state the precise formula which will be explained later. 
 
If the sampling is random, we can state with 95% confidence that: 
  

(Formula 1.1) 
n

PPPT )1(96.1 −
±=   , with T being the population, P the sample proportion and n the sample size  

 
Example: Just before an presidential election, a poll of 2,000 voters shows 760 for Candidate A and 1,240 for Candidate B. 
Calculate the 95% confidence interval for the population proportion T that will vote for Candidate Solution:  2.038.0 ±≅T  for 
candidate A, that is with 95% confidence, the proportion for candidate A among the whole population of voters will be between 
36% and 40%. 
Remark:. In the actual election, this proportion of the voting population has to be confirmed and there have been spectacular 
miscalculations and predictions. However, people like these types of forecasts and statisticians have to provide the tools of 
calculations to make the errors less likely and in general forecasts are better than their reputation at least if they are calculated 
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with the necessary professional diligence. 
 
Before we illustrate this formula with an example, we repeat the warning that we gave in the preface: Every numbered 
example in this text is an exercise that you should actively work out yourself, rather than passively read. We therefore put 
each example in the form of a question for you to answer; if you get stuck, then you may read the solution. But in all cases 
remember that statistics is not a spectator sport. You cannot learn it by watching, any more than you can learn to ride a bike 
by watching. You have to jump on and take a few spills. 
 
Constructing confidence intervals will be one of our major objectives. Another related objective is to test hypotheses. To use 
the same example, suppose that an ardent supporter of candidate A claimed that he/she would win the election. In 
mathematical terms, this hypothesis may be written: π > .50. On the basis of the information in above mentioned equation we 
would reject this hypothesis, of course. In general, there is a very close association of this kind between confidence intervals 
and hypothesis tests. 
 
We can make several other crucial observations:. 
1. The estimate is not made with certainty; we are only 95% confident. We must concede the possibility that we are wrong—
simply because we were unlucky enough to draw a misleading sample. For example, if less than half the population is in fact 
supports candidate A it is still possible, ,though unlikely, for us to run into a string of supporters of candidate A in our sample. 
In such circumstances, our confidence interval would be wrong. Since this sort of bad luck is possible but not likely, we are 
just 95% confident. 

2. As sample size n increases, we note that the error allowance in decreases. In Example 1, if the poll increased the sample to 
10,000 voters and continued to observe a proportion of .38, the 95'% confidence interval would become more precise: 

1.038.0 ±=T . This also is intuitively correct: a larger sample contains more information, and hence allows a more precise 
conclusion. 

3. Suppose that we feel that 95% confidence is not good enough, and that instead we want to be 99% sure of our conclusion. 
If the additional resources for further sampling are not available, then we can increase our confidence only by making a less 
precise statement. As we will be able to show later, for 99% confidence the formula must have the coefficient 1.96 enlarged to 
2.58; this yields the 99% confidence interval: 3.038.0 ±≅T  

This is broader and less precise than the 95% confidence interval; we must be less precise because we wish to be more 
certain of being right. In any case, we note that any statistical statement must be prefaced by some degree of uncertainty. 

Deduction and Induction 
Deduction in panel involves arguing from the general to the specific—i.e., from the population to the sample. Induction is the 
reverse—arguing from the specific to the general, i.e., from the sample to the population. The above Equation (1.1) represents 
inductive reasoning; we are arguing from a sample proportion to a population proportion. This is possible only if we study the 
simpler problem of deduction first. Specifically, in Equation (1.1) the inductive statement (that the population proportion can be 
inferred from the sample proportion) is based on a prior deduction (that the sample proportion is likely to be close to the 
population proportion). 

Subsequent chapters are devoted to deduction. This involves probability theory, leading up to such questions as, "With a 
given population, how will a sample behave? Will the sample be on target?" Only when this deductive issue is resolved can 
we move to questions of statistical inference in later chapters. To keep these terms straight, remember that the population is 
the point of reference. The prefix “de” means "away from." Thus deduction is arguing away from the population. The prefix “in” 
means "into" or "towards." Thus induction is arguing towards the population. Finally, statistical inference is based on induction  

Later we turn the argument around and ask, "From a given observed sample, what can we conclude about the unknown 
population?" 

Sampling—why and how? 
We draw a sample, rather than examine the whole population, for several reasons: 

1. Limited resources. For example, in pre-election polls, neither funds nor time are available to observe the whole population. 

2. Scarcity. Sometimes only a small sample is available. For example, in heredity versus environment controversies, identical 
twins provide ideal data because they have identical heredity. Yet very few such twins are available. 

3. Destructive testing. For example, suppose that we wish to know the average life of all the light bulbs produced by a certain 
factory. It would be absurd to insist on observing the whole population of bulbs until they burn out. 
 
If sampling is required, how should it be done? In statistics, as in business or any other profession, it is essential to distinguish 
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between bad luck and bad management. 
If we now return to our original example of pre-election polls, we note that the sample proportion of candidate A may 
misrepresent the population proportion for either of these reasons. No matter how well-managed and designed our sampling 
procedure may be, we may be unlucky enough to turn up a sample favouring Candidate A from a population favouring 
Candidate B. The Equation (1.1) relates to this case; it is assumed that the only complication is the luck of the draw, and not 
mismanagement. From that equation we confirm that the best defence against bad luck is to "keep playing"; by increasing our 
sample size, we improve the reliability of our estimate. 
The other problem is that sampling can be badly mismanaged or biased. For example, in sampling a population of voters, it is 
a mistake to take their names from a phone book, since poor voters who often cannot afford telephones are badly 
underrepresented. 
Other examples of biased samples are easy to find. Informal polls of people on the street often are biased because the 
interviewer tends to select people who seem civil and well-dressed; a surly worker or harassed mother is overlooked. 
 
The simplest way to ensure an unbiased sample is to give each member of the population an equal chance of being included 
in the sample. This, in fact, is essentially the definition of a "random" sample.' For a sample to be random it cannot be chosen 
in a sloppy or haphazard way; it must be designed carefully. One possibility is to number all the individuals in the population, 
and draw the sample by using a chance device such as a bowlful of numbered chips, a roulette wheel, or the random digits 
given by a computer. If a sample is random, not only will it be free of bias, but it also will satisfy the assumptions of probability 
theory, and allow us to make scientific inferences of induction. 
 
In some circumstances, the only available sample will be a non-random one. While probability theory often cannot be applied 
strictly to such a sample, it still may provide the basis for a good educated guess—or what we might term the art of inference. 
Although this art is very important, it cannot be discussed here although we apply it in the WBT; therefore only scientific 
inference is considered based on the assumption that samples are random. The techniques for ensuring this are discussed 
later. 
 

Descriptive Statistics for Samples 
 

Discrete Example 
In a sample of 50 families, let us record the number of children, X, which takes on the values 0, 1, 2, 3, . . . . We call X a 
"discrete" random variable because it can take on only a finite number of values.1 Suppose that the 50 values of X turn out to 
be: 
0,2,2,3,5,1,2,0, 4,2. 
To simplify, we keep a running tally of each of the possible outcomes. In column (3) we record, for example, that 13 is the 
frequency (/) that we observed for a two-child family. That is, we obtained this outcome on 13/50 of our sample observations; 
this proportion (.26 or 26%) is called relative frequency (f/n), and is recorded in the last column. 
 
Calculation of the Frequency and Relative Frequency of the Number of Children in a Sample of 50 families. 
 

                                                         50=∑ f                 1=∑ n
f

 

  
Table 2-1 
where∑   means "the sum of." Thus, for example, f∑ means "the sum of the frequencies." 
Usually, for relative frequencies (and probabilities) mathematicians prefer decimals, while applied statisticians prefer 
percentages. Therefore, we usually do our calculations in decimal form and usually give the verbal interpretations in 
percentage form. 
 
The information in column (3) is called a "frequency distribution," which is graphed in Figure 2-1. The "relative frequency 
distribution" in the last column could be graphed similarly; note that the two graphs are identical except for the vertical scale. 
Hence, a simple change of vertical scale transforms Figure 2-1 left side into a relative frequency distribution (right side). 



    

Compiled by Klaus Röder Page 
Berater - Consultant 
 

62013-06-18 

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

Number of Children

Fr
eq

ue
nc

y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Re
al

tiv
e 

Fr
eq

ue
nc

y

 
Figure 2-1 
 

Continuous Example 
Suppose that we take a sample of 200 men, each of whose height is recorded in inches. We call height X a "continuous" 
random variable, since an individual's height might be any value, such as 64.328 inches. It no longer makes sense to talk 
about the frequency of this specific value of X, since never again will we observe anyone who is exactly 64.328 inches tall. 
Instead we can tally the frequency of heights within a class or cell (e.g., 58.5" to 61.5"), as in Table 2-2. Then the frequency 
and relative frequency are tabulated, as before. 
We have chosen the cells somewhat arbitrarily, but with the following conveniences in mind: 

 
1. The number of cells is a reasonable compromise 
between too much detail and too little. Usually, 5 to 15 
cells is appropriate. 
2. Each cell midpoint, which hereafter will represent all 
observations in the cell, is a convenient whole number. 
The grouping of the 200 observations into cells is 
illustrated.  
 
 
 
Table 2-2 
 

 
The grouped data are graphed in Figure 2-2. We use bars to represent frequencies as a reminder that the observations 
occurred throughout the cell, and not just at the midpoint. Such a graph is called a bar diagram or histogram. 
 
We next turn to the question of how we may characterize a sample frequency distribution with a single descriptive number. 
There are two very useful concepts: the first is the centre of the distribution, and the second is the spread. These concepts will 
be illustrated with the continuous distribution of men's heights; but their application to discrete distributions (such as family 
size) is even more straightforward. 
 

(1) (2) (3) (4) (5) 

Cell No. Cel 
Boundaries 

Cel 
Midpoints 

Frequency Relative 
Frequency 

1 58.5-61.5 60 2 0.01 
2 61.5-64.5 63 10 0.05 

    66 48 0.24 
    69 64 0.32 
    72 56 0.28 
    75 16 0.08 

7 76.5-79.5 78 4 0.02 
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Figure 2-2 
 

Centre of a Distribution 
There are many different ways to measure the centre of distribution. Three of these—the mode, the median, and the mean—
are discussed below, starting with the simplest. 
 

• The Mode 
Since mode is the French word for fashion, the mode of a distribution is defined as the most frequent (fashionable) value. In 
the example of men's heights, the mode is 69 inches, since this cell has the greatest frequency or highest bar in Figure 2-2. 
Generally, the mode is not a good measure of central tendency, since often it depends on the arbitrary grouping of the data.  
We also can draw a sample in which the largest frequency (highest bar in the group) occurs twice; this ambiguity is left 
unresolved, and the distribution is called "bimodal." 

• The Median 
The median is just the 50th percentile, i.e., the value below which 50% of the values in the sample fall. Since it splits the 
observations into two halves, it sometimes is called the middle value. In the sample of 200 detailed heights shown in Figure 2-
2, the median (say, 69.3) easily is found by reading the 100th value from the left. Bui if the only information available is the 
grouped frequency distribution in Figure 2-2, the median can only be approximated, by choosing an appropriate value within 
the median cell. 

• The Mean 
This sometimes is called the arithmetic mean, or simply the average, 
and is the most common central measure. The original observations 
(X1, X2, . . . , Xn,,,) simply are summed, then divided by n.  

Comparison of Mean, Median, and Mode 
These three measures of centre are compared in Figure 2-3. In 
Figure 2-2 we showed a distribution that has a single peak and is 
symmetric (i.e., one hall is the mirror image of the other); in this case, 
all three central measures coincide. But when the distribution is 
skewed to the right, as in Figure 2-3 the median falls to the right of 
the mode; with the long scatter of observations strung out in the right-
hand tail, we have to move from the mode to the right to pick up half 
the observations.  

 

 

 

 

 

Spread of a Distribution 
Although average height may be the most important single statistic, it also is important to know how spread out or varied the 
observations are. As with measures of centre, we find that there are several measures of spread. We will start with the 
simplest. 

 
Figure 2-3 
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• The Range 

The range is simply the distance between the largest and smallest value: Range = largest — smallest observation 

For men's heights, the range is 21 (i.e., 79.5-58.5). It may be criticized fairly on the grounds that it tells us nothing about the 
distribution except where it ends. And using only these two observations may be very unreliable. We therefore turn to 
measures of spread that take account of all observations. 

• Mean Absolute Deviation (MAD) 

The average deviation, as its name implies, is found by calculating the deviation of each observation from the mean; these 
deviations {Xi — Mean) then are averaged by summing and dividing by n. Although this sounds like a promising measure, in 
fact it is worthless; positive deviations always cancel negative deviations, leaving an average of zero. This sign problem can 
be avoided by ignoring all negative signs and taking the average of absolute values of the deviations:  

 

where is the mean 

 

 

• Mean Squared Deviation (MSD) 

Although MAD intuitively is a good measure of spread, it is mathematically intractable. We therefore turn to an alternative 
means of avoiding the sign problem, squaring each deviation: 

 

 

 

 

• Variance and Standard Deviation 

MSD is a good measure, provided that we only wish to describe the sample. But typically we shall want to go one step further 
and use this to make a statistical inference about the population. For this purpose it is better to use the divisor (n-1) rather 
than n 

 

 

 

 

(Formula 2-1) 

• Kurtosis 

Kurtosis is based on the size of a distribution's tails. Distributions with relatively large tails are called "leptokurtic"; those with 
small tails are called "platykurtic." A distribution with the same kurtosis as the normal distribution is called "mesokurtic."  

 

The following formula can be used to calculate  

the Kurtosis of a sample:  

 

The kurtosis for a standard normal distribution is 3. For this reason, most sources use the above definition of kurtosis, 
sometimes referred to as "excess kurtosis". This definition is used so that the standard normal distribution has a kurtosis of 
zero. In addition, with this definition positive kurtosis indicates a "peaked" distribution and negative kurtosis indicates a "flat" 
distribution.  

• Skewness 
 
Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it 
looks the same to the left and right of the centre point. Negative values for the Skewness indicate data that are skewed left 
and positive values for the Skewness indicate data that are skewed right. By skewed left, we mean that the left tail is long 
relative to the right tail, skewed right means that the right tail is long relative to the left tail. 
The following formula can be used to calculate  

The Skewness of a sample:  

∑
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Probability 
 

Introduction to Probability 
  
In the next chapters, we make deductions about a sample from a known population. For example, if the population of 
American voters is 55% in favour of one candidate, we can hardly hope to draw exactly that same percentage in a random 
sample. Nevertheless, it is "likely" that "close to this percentage will turn up in our sample. Our objective is to define 
likely" and "close to" more precisely; in this way we shall be able to make useful predictions. First, however, we must lay a 
good deal of groundwork. Predicting in the face of uncertainty requires a knowledge of the laws of probability, and this chapter 
is devoted exclusively to their development. We shall begin with the simplest example - rolling dice - which was also the 
historical beginning of probability theory, several hundred years ago. 
 

Concept of Probability 
Suppose that a gambler has a die he suspects is loaded, and asks us the probability that it will come up an ace (one dot). One 
solution would be lo roll it over and over again, observing the relative frequency of aces is 1/6. Of course, rolling if five or ten 
tines would not be enough lo average out chance fluctuations. But over the long run, the relative frequency of aces would 
settle down to a limiting value, which is probability. That is: 
  
Probability = proportion, in the long run. 
  

or, more formally:  
n
ne 1lim)Pr( 1 =  

  
where e1  is the outcome ("ace") 
n is the total number of times that the trial is repeated (die is thrown) 
n1  is the number of times that the outcome el occurs (also called the frequency,  n1 / n  is therefore the relative frequency of e1 
lim is "the limit of . .  . , as n approaches infinity." 
 
Throughout this handbook, we shall continue to think of probabilities as proportions, because this is such a clear and intuitive 
concept. Strictly speaking, however the formula should be taken as a way to empirically determine or interpret probability.  
 

Elementary Properties of Probability 
We generalize by considering an experiment with N outcomes (ex, e2, ..,ei,…,eN). The relative frequency ni/n of any outcome 
ei must be positive, since both the numerator and denominator are positive; moreover, since the numerator cannot exceed the 
denominator, relative frequency cannot exceed 1. So: 

• 0<= ni/n <= 1 and  

• Any probability lies between 0 and 1 

• The sum of all relative frequencies adds up to 1 

Probability Distributions 
 

Discrete Random Variables 
Suppose that a couple is planning three children and is primarily interested in the number of boys. This is an example of a 
random variable and is usually denoted by a capital letter: 
X = the number of boys 
The possible values of X are 0, 1, 2, 3; however, they are not equally likely. To find the probabilities are, we must examine the 
original sample space.  Thus, for example, the event "one boy” (X=1) consists of three of the equally probable outcomes and 
its probability is 3/8. Similarly the probability of each of the other events is computed 
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One Boy (B) 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 4-1 The random variable X = “number of boys”  
 
So in Figure 4-1, we obtain the probability distribution of X. and one can state: 
A discrete random variable takes on various values with probabilities specified by its probability distribution. 
 
As shown in Figure 4-1, we begin in the original sample space by considering events such as (X — 0), (X = 1), . . , in general 
(X = x); note that capital X represents the random variable while small x represents a specific value that it may take. For these 
events we calculate the probabilities and denote them p(0), p(1),  …, p(x), This  probability distribution  p(x) may be presented 
equally well in any of the customary forms for a function: 

• Table form, as in the right-hand side of Figure 4-1.  
• A Graph as in Figure 4-1 
• A general  formula, which we skip her for simplicity 

 
In Figure 4-1, the original sample space (outcome set) is reduced to a much smaller and more convenient numerical sample 
space. The original sample space was introduced to enable us to calculate the probability distribution p(x) for the new space; 
having served its purpose, the old unwieldy space is then forgotten. The interesting questions can be answered very easily in 
the new space. For example from Figure 4-1, what is the probability of one boy or fewer? We simply add up the relevant 
probabilities in the new sample space: 
 

2/18/38/1)1()0()1Pr( =+=+=≤ ppX  

Mean and Variance 
 
Notice the close relation between the relative frequency distribution observed and the probability distribution calculated in 
Figure 4-1 for planning 3 children: if the sample size were increased   without limit, the relative frequency distribution would 
settle down to the probability distribution. This is an old story: relative frequency becomes probability in the limit. 
From the relative frequency distribution, we calculated the mean x,¯  and the variance s2 of the sample. It is natural to 
calculate analogous values from the probability distribution and call them the mean μ and variance σ2 of the probability 
distribution p(x), or of the random variable X itself  
So the population mean is  (Formula 4-1) 
 
 
and the population variance (Formula 4-2) 

 
We are following the usual custom of reserving Greek letters for population values. In Greek μ is the equivalent of m for 
mean, and σ is the Greek equivalent of s for standard deviation. 
A clear distinction must be made between sample and population values: μ is called the population mean since it is based on 
the population of all possible repetitions of the experiment; on the other hand, we call x,¯  the sample mean since it is based 
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on a mere sample drawn from the parent population. Similarly, σ2 and s2 represent population and sample variance, 
respectively. Since the definitions of μ and σ2 are similar to those of mean x,¯  and s2, we find similar interpretations. We come 
to think of the mean μ as a weighted average using probability weights rather than relative frequency weights. The standard 
deviation σ is a measure spread, in a sense, a typical deviation. 
 

Continuous Distributions 
In Figure 2-2, we saw how a continuous quantity such as height could be nicely represented by a bar graph showing relative 
frequencies. This graph is reproduced in Figure 4-2 (a), below (with height now measured in feet, rather than inches; 
furthermore, the y-axis has been shrunk to the same scale as the x-axis.) The sum of all the relative frequencies (i.e., the sum 
of all the heights of the bars) in Figure 4-2 is of course 1, as we first noted in Table 2-2. We find it convenient to change the 
vertical scale to relative frequency density as in Figure 4-2 (b). This rescaling is designed specifically to make the total area 
equal to 1. We accomplish this by defining: 
 
 
relative frequency density  
  

 = relative frequency 
1/4 

  
 
 
 
 
 
Total area of relative frequency density =1,  
because 4* 0.25 (cell width) *1 =1 
 
With a small sample, chance fluctuations influence the picture.  
But as sample size increases, chance is averaged out. 
And a relative frequency settles down to 
probabilities. At the same time, the increase in 
sample size allows a finer definition of cells. 
While the area remains fixed at 1 the relative 
frequency density becomes approximately a 
(red) curve, the so-called probability density 
function, which we shall refer to simply as the 
probability distribution, denoted by p(x). 
II we wish to compute the mean and variance 
from Figure 4-2 (b) the discrete formulas (4-1) 
and (4-2) can be applied. But if we are working 
with the probability density function (the red 
line)   then integration (which, as calculus 
students will recognize, is the limiting case of 
summation) must be used; if a and b are the 
limits of X, then the formulas will become 
 
 
 
 
 
 
So the population mean becomes   (Formula 4-3) 
 
 
 
and the population variance        (Formula 4-4) 
 
 
All the theorems that we state about discrete random variables are equally valid for continuous random variables, with 
summations replaced by integrals. Therefore theorems are giving for discrete random variables only. 
 
 
 
 
 

= relative frequency 
cell width 

 = 4( relative frequency) 
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The Normal Distribution 
  
For many random variables, the probability distribution is a specific bell-shaped curve, called the normal curve, or Gaussian 
curve. It is the most useful probability distribution in statistics. For example, errors made in measuring physical and economic 
phenomena often are distributed normally. In addition, many other probability distributions often can be approximated by the 
normal curve. 
 

Standard Normal Distribution 
 
A random variable Z is called standard normal if its probability distribution is: 
 

 The constant π2/1 is a scale factor required to make the total area 1. The symbols �π� and “e” 
denote important mathematical constants, approximately 3.14 and 2.72 respectively. (Formula 4-
5) 

 
 
We draw the normal curve in Figure 4-3 to reach a 
maximum at z = 0; we confirm in (4-5) that this is so. 
As we move to the left or right of 0, z increases in 
the negative exponent; therefore p(z) decreases, 
approaching zero in both tails. This curve also is 
symmetric: since z appears only in squared form, -z 
generates the same probability in (4-5) as +z. 
The mean and variance of Z can be calculated by 
integration using (4-3) and (4-4); since this requires 
calculus, we quote the results without proof:  
 

 
 
 
 

 
It is for this very reason, in fact, that Z is called a 
standard normal variable. Later when we speak of "standardizing" any variable, this is precisely what we mean: shifting it so 
that its mean is zero and rescaling it so that its standard deviation (or variance) is one. 
The probability (area) enclosed by the normal curve above any 
specified value z0 also requires calculus to evaluate precisely, 
but may be easily pictured, as in Figure 4-4. Without resorting to 
calculus you can think of this as accumulating the area of the 
approximating rectangles, as in Figure 4-2.  
 

General Normal Distribution 
 
In the previous section, we considered only a very special 
normal distribution the standard normal Z with mean 0 and 
standard deviation 1. Now consider the general form of the 
normal distribution, centred on any mean μ and with any 
standard deviation σ.  It’s probability distribution has the formula, 
 

 
but for this introduction we will leave further explanations to individual studies and the 
mentioned textbooks. 
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Covariance and Correlation 
 

Covariance 
In this section, we shall develop a measure of how well two variables are linearly related. As an example, consider the joint 
distribution tabled in Figure 4-5. We notice some tendency for these two variables to move together: a large x tends to be 
associated with a large y, and a small x with a small y. 
Our measure of how the variables move together should be independent of where the variables happen to be centred. We 
therefore consider the deviations from the mean: 

  
The Figure 4-5  
Shows data points with two coordinates. 
Big diamonds mean 2 data points are 
located at this position or translation into 
relative frequency, their value is 0.2 
whereas the expected frequency of the 
small diamonds is 0.1 (like always all p(x,y) 
adding up to 1) . 
Graph of joint distribution p(x, y), showing 
new variables (X — xµ ) and (Y — yµ ) 
that translate axes into new dotted position 
(x - xµ ) and (y - yµ )  
 
Now let us multiply die deviations, 
obtaining the product: 
(x - xµ ) (y - yµ )   (Formula 4-5) 
 
For any point in the NE (North-East) 

quadrant of Figure 4-5, both deviations are positive, so their product is positive. This also holds for any point in the SW 
quadrant, since both deviations are negative. For points in the other two quadrants, the product is negative. We can obtain a 
good measure of how X and Y vary together if we sum all these products, attaching the appropriate probability weights to 
each. This is called the covariance: 

  
 
(Formula 4-6) 
  
 

For the distribution in Figure 4-5 (see data table on the right) the covariance is  = +2 
 
The covariance was positive in this case because the variables moved together; that is, the heavier probabilities 
occurred in the NE and SW quadrants. I f the heavy probabilities had occurred in the other two quadrants, the 
covariance would have been negative, indicating the tendency for X and Y to move in opposite directions. Finally, if 
the probabilities had been evenly distributed in all four quadrants, the covariance would have been zero, indicating 
no tendency for X and Y to move together. 

Correlation 
The covariance still can be improved. As it now stands, it depends upon the units in which X and Y are measured. If X were 
measured in feet instead of inches, each x-deviation in (4-5) and hence the covariance itself, would unfortunately change by a 
factor of 12. To eliminate this difficulty, consider a modified concept called the correlation ρ 
 

 
  
(Formula 4-6) 
 
 
 

This does, in fact work, measuring X in terms of feet rather than inches still changes the numerator by a factor of 12, but this is 
exactly cancelled by a change in the denominator by the same factor 12. Since  (4-6) similarly neutralizes any change in the 
scale of Y, the correlation coefficient ρ is, as desired, completely independent of the units of measurement of either variable. 
Another reason that ρ is a very useful measure of the relation between  X and Y is that it is always bounded by: 
 

x y 
2 2 
4 3 
4 3 
4 5 
6 4 
6 4 
8 3 
8 5 
8 5 

10 6 

 
Figure 4-5 

( )( ) ),( yxpyx y
x y

xxy µµσ −−= ∑∑  

yx

xy
xy σσ

σ
ρ =  

 



    

Compiled by Klaus Röder Page 
Berater - Consultant 
 

142013-06-18 

-1 < ρ < + 1 
 
Whenever X and Y have a perfect positive linear relation (as would occur if the entire distribution in Figure 4-5 were located on 
a straight line with positive slope), then ρ takes on the limiting value of +1. If there is a perfect negative linear relation, then ρ 
would be -1. To illustrate these bounds, we calculate ρ for the data in Figure 4-5. 

   
 
= .71   which is indeed  less than 1. 
 
 
 

Finally, we must ask how correlation and independence are related. In probability theory, to say that two events are 
(statistically) independent intuitively means that the occurrence of one event makes it neither more nor less probable that the 
other occurs. For example: 
 
The event of getting a 6 the first time a die is rolled and the event of getting a 6 the second time are independent. 
By contrast, the event of getting a 6 the first time a die is rolled and the event that the sum of the numbers seen on the first 
and second trials is 8 are dependent. 
 
An important theorem states: 

  
  
 
 

Sampling 
Up to now we have studied probability and random variables so that we can now answer the basic deductive question in 
statistics: What can we expect of a random sample drawn from a known population? 

Random Sampling 
We already have considered several examples of sampling: the poll of voters sampled from the population of all voters; the 
sample of light bulbs drawn from the whole production of bulbs; a sample of men's height drawn from the whole population; 
and a sample of two chips drawn from a bowl of chips. In cases such as these, the sample is called random if each individual 
in the population is equally likely to be sampled. For example, suppose that a random sample is to be drawn from the 
population of students in the classroom. There are several ways to actually carry out the physical process of random 
sampling. 

1. The most graphic method is to record each person on a cardboard chip, mix all these chips in a large bowl, and then 
draw the sample. 

2. A more practical method is to assign each person a number, and then draw a random sample of numbers. For 
example, suppose that a random sample of 12 students is to be drawn from a class (population) of 100 students. By 
counting off, each student can be assigned a different 2-digit number. Then 12 such numbers can be read out of a 
table of random digits as generated by the computer. 

 
These two sampling methods are mathematically equivalent. Since the random number method is simpler to employ, it is 
common in practical sampling. However, the bowlful of chips is easier conceptually; consequently, in our theoretical 
development of random sampling, we shall often visualize drawing chips from a bowl. 
 
We cut here matters short, since we are not so much interested in statistics theory (however, if you are, please consult the 
recommended text books) but me may retain the  
 
Conclusion 
We may restate the definition of simple random sampling in more mathematical terms for future reference: 
A simple random sample is a sample whose n observations X1, X2, . . . , Xn are independent. The distribution of each Xi is the 
population distribution p(x) (with mean μ and variance σ2). 
  
The exception to this is sampling from a small population, without replacement. This case, which is more difficult, will not be 
dealt with here but should be referred to in the text books. Everywhere else, we shall assume simple random sampling. 
  

As a first important finding: We have deduced the behaviour of a sample mean from knowledge of the population. 
For example, suppose that a sample of n = 4 observations is drawn from the population of heights as in Figure 4-2 (b)  
1. Then X would fluctuate around: mean x,¯  and the variance s2 

 E means the expected value of .. 
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n/σ  

with a standard deviation for the sample of size 4: 

 

 

The distribution of X is shown in Figure 5-1. It is also intuitively clear: X fluctuates around the same central value as an 
individual observation, but with less deviation because of "averaging out." 
A concrete view of "averaging out" may be helpful: we might get a seven-foot man as an individual observation from the 
population, but we would be far less likely to get a seven-foot average in a sample of four men. This is because any seven-foot 
man that appears in the sample will likely be partially cancelled by a short man; or at least his effect will be diluted, 
because he is averaged in with other (more typical) men. 
Since it is very important to distinguish between the distribution of the sample mean X and the population distribution, 
we introduce two conventions: 
 

 
1. Since the population "gives birth" to the sample, we shall speak of the 

population distribution as the parent distribution. The distribution of X is then 
called a derived distribution or a sampling distribution. 

2. In the diagrams in the handbook, colour is reserved for samples and sampling 
distributions. In contrast, parent populations are shown in grey. This convention 
first appears in Figure 5-1, where the distribution of the sample mean X is 
shown in colour, while the distribution of the parent population is shown in grey. 

  

 

 

 

 

The Central Limit Theorem 
In the preceding section, we found the mean and standard deviation of  x,¯ . Now we shall investigate the shape of its 
distribution. 

The Distribution of x,¯  from a Normal Population 
There is a very important theorem about linear combinations of normal variables, (without proof) 

 
 
 

 
To see how this theorem will answer questions about sampling, suppose we have a parent population that is normal. Then 
each observation in the sample X1, X2, . . . , Xn has this same normal distribution.. Since the sample mean x,¯  is a linear 
combination of these normal variables, the theorem establishes that x,¯  is normal. 
 

The Distribution of x,¯  from a Non-normal Population 
On can show with experiments for a non-normal population; that how the distribution of the sample mean changes shape as 
sample size n increases. The sample mean becomes approximately normally distributed as n grows, no matter what the 
parent population is. This is especially remarkable for a skewed population which eventually generates the symmetric normal 
distribution for the sample mean. This pattern is so important that mathematicians have formulated it as: 
 
The central limit theorem: As the sample size n increases, the distribution of the mean x,¯ of a random sample taken from 
practically any population approaches a normal distribution (with mean μ, and standard deviation               ). 
 

The central limit theorem is not only remarkable, but very practical as well. For it completely specifics the distribution of  x,¯  
in large samples, and is therefore the key to large-sample statistical inference. In fact, in most cases when the sample size 
n reaches about 10 or 20, the distribution of x,¯  is already is practically normal. The proof of this theorem requires a very 
heavy mathematical background, and so we omit it. 

Figure 5-1 

 

If X and Y are normal, then any linear combination Z =aX + bY is also a normal random variable. 
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Confidence Intervals and t-Test 
 
So far, we considered various point estimators, except for the very beginning in chapter one. For example, we concluded that 
x,¯  was a good estimator of μ for populations that are approximately normal. Although on average x,¯  is on target, however, 
the specific sample mean x,¯  that we happen to observe is almost certainly a bit high or a bit low. Accordingly, if we want to 
be reasonably confident, that our inference is correct, we cannot claim that μ is precisely equal in the observed x,¯ . Instead, 
we must construct an interval estimate or confidence interval of the form: 
 
μ = x,¯  ± a sampling error 
 
The crucial question is: How wide must this 
allowance for sampling error be? The answer, of 
course, will depend on how much x,¯  fluctuates 
(i.e., on the sampling distribution of x,¯ ), which we 
review in Figure 6-1 . 
First we must decide how confident we wish to be 
that our interval estimate is right—that it does 
indeed bracket μ. It is common to choose 95% 
confidence; in other words, we will use a 
technique that will give us, in the long run, a 
correct interval 19 times out of 20. 
To get a confidence level of 95%, we select the 
smallest range under the normal distribution of x,¯  
that will just enclose a 95% probability. Obviously, 
this is the middle chunk, leaving 2.5% probability 
excluded in each tail. From standard tables, we 
find that this requires a z value of 1.96. 
That is, we must go above and below the mean by 
1.96 standard deviation of x,¯ , as shown in Figure 6-1. The standard deviation of x,¯  (also called the standard error) is 
denoted by σx,¯ , so that we may write: 
 
Pr (μ - 1.96 σx,¯  < x,¯  < μ + 1.96 σx,¯ ) = 95%  
or turned around    (Formula 6-1) 
Pr (x,¯  - 1.96 σx,¯  <  μ < x,¯ + 1.96 σx,¯ ) = 95%   
 
We must be exceeding careful not to misinterpret the second part of (6-1). μ has not changed its character in the course of 
this algebraic manipulation. It has not become a variable but has remained a population constant. Equations (6-1) are 
probability statements about the random variable x,¯ , or more precisely, the "random interval". It is this interval that varies and 
not μ. 
 
In the previous sections, we assumed that, in constructing a confidence interval, the statistician knows the true population 
standard deviation. In this section, we consider the more typical case in which he does not. 
 
Since σ is unknown, the statistician who wishes to evaluate the confidence interval (95%) must use some estimator of σ. The 
most obvious candidate is the sample standard deviation s (note that s, along with x,¯ , always can be calculated from the 
sample data). Substituting s into the standard formula (remember 1-1), he estimates the 95% confidence interval for as the 
generalized formula: 

n
szX 025.±=µ  where the z-value is 1.96 obtained from the table of Standard Normal Cumulative Probability  

 
Provided that his sample is large (50 or 100), depending on the precision required), this will be an accurate enough 
approximation.  But if the sample size is small, this substitution introduces an appreciable source of error. Therefore, if the 
statistician wishes to remain 95% confident, his interval estimate must be broadened. How much? 
Recall that x,¯  has a normal distribution; when σ was known, we formed the standardized normal variable 
 
 

 By analogy we introduce “Student’s t” variable . 
 
 
 
 
 

The similarity of these two variables immediately is evident. The only difference is that Z involves σ, which usually is unknown; 
but t involves s, which always can be calculated from the sample. The distribution of t is similar to the normal distribution. The t 
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Figure 6-1 Normal distribution of the sample mean around the 
fixed but unknown parameter μ. 95% of the probability is 
contained within 1.96 standard errors 
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distribution has a wider spread than the normal, of course, since the use of s instead of σ introduces additional uncertainty. 
Moreover, while there is one standard normal distribution, there is a whole family of t distributions. 
Note that with small sample size, the t distribution differs substantially from the normal; but as sample size increases, it 
approaches the normal. The distribution of t is not tabled according to sample size n, but rather according to the divisor in s2, 
which now is called "degrees of freedom” as in calculation the Variance s2 in Formula 2-1. So for a sample size n we calculate 
the expected frequency and thus the confidence intervals in general terms for the population mean based on a sample: 
 
μ. = x,¯  +,¯  t.025  (estimated standard error = s/ √(n) )  (Formula 6-2) 
  
where t.025 is the critical t value leaving 2.5% of the probability in the upper tail, with n —  1 degrees of freedom. 
To sum up, we note the similarity of t estimation in (6-2) and normal estimation (μ. = x,¯  +,¯  z.025  (σ/ √(n)). The only 
difference is that the observed sample value s is substituted for σ, and as a consequence the critical t value must be 
substituted for the critical z value. 
An important practical question is: When do we use the t distribution and when do we use the normal? If σ is known, the 
normal distribution is appropriate; if σ is unknown, then the t distribution is appropriate — regardless of sample size. However, 
if the sample size is large, the normal is an accurate enough approximation of the t. So in practice, the t distribution is used 
only for small samples when σ is unknown and the normal is used otherwise. 
 

Hypothesis Testing 
 
 
Traditionally hypothesis testing has been treated as a separate topic in a statistics courses. It is closely related, however, to 
the interval estimates we just discussed in the previous chapters. Therefore, this section starts with hypothesis testing as a 
rewording of confidence intervals 

Hypothesis Testing Using Confidence Intervals 
In general, any hypothesis that lies outside the confidence interval may be judged implausible or rejected. On the other hand, 
any hypothesis that lies within the confidence interval may be judged plausible, or acceptable. So: 

  
  
 

 
 
Example1: 
At a large American university in, the male and female professors were sampled independently, yielding the following annual 
salaries (in ten-thousands of dollars, rounded):  
 

Men (X1) Women (X2) 

12, 20 9 
11, 14 12 
19, 17 8 
16, 14 10 
22, 15 16 

x,¯ 1 = 16 x,¯ 2 = 11 

These sample means give a rough estimate of the underlying population means μ1 and μ2. Perhaps they can be used to settle 
the following argument. 
A husband claims that there is no difference between the salary means that is, if we denote the difference as H, he claims 
that: H = 0, his wife, however, claims that the difference is as large as seven thousand dollars: H=7 
  
The calculation (cut short) of the 95% confidence interval is being used, and with the t-value for 95% = 2.16 came up with 
following results. The following formula is the 95% confidence interval for two means in independent samples when population 
variances are equal and unknown. So it translates to the Hypothesis: 
H = (x,¯ 1  - x,¯ 2) ± t.025 *  sp √( 1/n1 +1 /n2)  
... 
= 5.0 ± 2.16(1.87)  
= 5.0 ± 4.0 
 
Thus, with 95% confidence, H is estimated to be between 1 and 9. Thus the claim A = 0 seems implausible, because it falls 
outside this confidence interval 
                                                           
1 from D. A. Katz, "Faculty Salaries, Promotions, and Productivity at a Large University” American Economic Review, June 
1973. 
 

A confidence interval may be regarded as just the set of acceptable hypotheses. 
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Since a 95% confidence interval is being used, it would be natural to speak of an hypothesis as being tested at a 95% 
confidence level. In abiding to convention, however, we use 5% -the complement of 95% - and simply call it the level of the 
test. Thus, we formally conclude that the hypothesis H = 0 is rejected at the 5% level. In other words, we see that there is 
sufficient data (a small enough sampling error) to allow us to discern (observe) a real difference. We therefore call this 
difference statistically discernible at the 5% level. 
 
In summary, if a confidence interval already has been calculated, then it can be used immediately, without any further 
calculations, to test any hypothesis. 
 
The hypothesis H = 0 in is of particular interest; since it represents no difference whatsoever, it is called the null hypothesis 
Ho. In rejecting it because it lies outside the confidence interval, we establish the important claim that there is indeed a 
difference between men's and women's income. Such a result traditionally has been called statistically significant at the 5% 
significance level. 
 
There is a problem with this terminology. When the term "statistical significance" is used in this way, it simply means that 
enough data have been collected to establish that a difference does exist. It does not mean that the difference is necessarily 
important. For example, in another test based on very large samples from nearly identical populations, the 95%-confidence 
interval, instead of the example might be: 
 
H = .005 ± .004 
 
This difference is so miniscule that we could dismiss it as being of no real interest, even though it is statistically as significant 
as before. In other words, statistical significance is a technical term with a far different meaning than ordinary significance. 
Unfortunately but understandably, many people tend to confuse statistical significance with ordinary significance. To reduce 
the confusion, we prefer the word "discernible" to the word "significant." In conclusion, therefore, the traditional phrase 
"statistically significant at 5% significance level" technically means exactly the same thing as "statistically discernible at the 5% 
level." The latter phrase is preferable, because it is less likely to be misinterpreted. 
 

What is the Prob-Value? 
In the previous section, we developed a simple way to test any hypothesis by examining whether or not it falls within the 
confidence interval. Now we shall take a new perspective by concentrating on just one hypothesis— the null hypothesis Ho. 
We shall calculate just how much (or how little) it is supported by the data. 
 
Prob-value (also called P-value or Probability- value) = Pr(X would be as large as the value actually observed, if Ho were true) 
 
In general, for any hypothesis being tested, we define the Prob-value for Ho as: 
  
The lower the Prob-value, the less likely the result is if the null hypothesis is true, and consequently the more "significant" the 
result is, in the sense of statistical significance.   
 
The Prob-value is an excellent way to summarize what the data says about the credibility of Ho. 
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Cluster Analysis  
Source: STATSOFT Statistics Textbook - STATISTICA Data Analysis Software and Services 

General Purpose 
The term cluster analysis (first used by Tryon, 1939) encompasses a number of different algorithms and methods for grouping 
objects of similar kind into respective categories. A general question facing researchers in many areas of inquiry is how to 
organize observed data into meaningful structures, that is, to develop taxonomies. In other words cluster analysis is an 
exploratory data analysis tool which aims at sorting different objects into groups in a way that the degree of association 
between two objects is maximal if they belong to the same group and minimal otherwise. Given the above, cluster analysis 
can be used to discover structures in data without providing an explanation/interpretation. In other words, cluster analysis 
simply discovers structures in data without explaining why they exist. 
 
We deal with clustering in almost every aspect of daily life. For example, a group of diners sharing the same table in a 
restaurant may be regarded as a cluster of people. In food stores items of similar nature, such as different types of meat or 
vegetables are displayed in the same or nearby locations. There are countless number of examples in which clustering plays 
an important role. For instance, biologists have to organize the different species of animals before a meaningful description of 
the differences between animals is possible. According to the modern system employed in biology, man belongs to the 
primates, the mammals, the amniotes, the vertebrates, and the animals. Note how in this classification, the higher the level of 
aggregation the less similar are the members in the respective class. Man has more in common with all other primates (e.g., 
apes) than it does with the more "distant" members of the mammals (e.g., dogs), etc. 

Statistical Significance Testing 
Note that the above discussions refer to clustering algorithms and do not mention anything about statistical significance 
testing. In fact, cluster analysis is not as much a typical statistical test as it is a "collection" of different algorithms that "put 
objects into clusters according to well defined similarity rules." The point here is that, unlike many other statistical procedures, 
cluster analysis methods are mostly used when we do not have any a priori hypotheses, but are still in the exploratory phase 
of our research. In a sense, cluster analysis finds the "most significant solution possible." Therefore, statistical significance 
testing is really not appropriate here, even in cases when p-levels are reported (as in k-means clustering). 
 

Area of Application 
Clustering techniques have been applied to a wide variety of research problems. Hartigan [42] provides an excellent summary 
of the many published studies reporting the results of cluster analyses. For example, in the field of medicine, clustering 
diseases, cures for diseases, or symptoms of diseases can lead to very useful taxonomies. In the field of psychiatry, the 
correct diagnosis of clusters of symptoms such as paranoia, schizophrenia, etc. is essential for successful therapy. In 
archeology, researchers have attempted to establish taxonomies of stone tools, funeral objects, etc. by applying cluster 
analytic techniques. In general, whenever we need to classify a "mountain" of information into manageable meaningful piles, 
cluster analysis is of great utility.  

General Logic 
The example in the General Purpose Introduction illustrates the goal of the joining or tree clustering algorithm. The purpose of 
this algorithm is to join together objects (e.g., animals) into successively larger clusters, using some measure of similarity or 
distance. A typical result of this type of clustering is the hierarchical tree.  

Joining (Tree Clustering) 

Hierarchical Tree 
Consider a Horizontal Hierarchical Tree Plot (see graph below -Dendogram), on the left of the plot, we begin with each object 
in a class by itself. Now imagine that, in very small steps, we "relax" our criterion as to what is and is not unique. Put another 
way, we lower our threshold regarding the decision when to declare two or more objects to be members of the same cluster. 
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Figure 6-2 A Dendogram 
 
As a result we link more and more objects together and aggregate (amalgamate) larger and larger clusters of increasingly 
dissimilar elements. Finally, in the last step, all objects are joined together. In these (Dendogram) plots, the horizontal axis 
denotes the linkage distance. Thus, for each node in the graph (where a new cluster is formed) we can read off the criterion 
distance at which the respective elements were linked together into a new single cluster. When the data contain a clear 
"structure" in terms of clusters of objects that are similar to each other, then this structure will often be reflected in the 
hierarchical tree as distinct branches. As the result of a successful analysis with the joining method, we are able to detect 
clusters (branches) and interpret those branches.  

Distance Measures 
The joining or tree clustering method uses the dissimilarities (similarities) or distances between objects when forming the 
clusters. Similarities are a set of rules that serve as criteria for grouping or separating items. In the previous example the rule 
for grouping a number of diners was whether they shared the same table or not. These distances (similarities) can be based 
on a single dimension or multiple dimensions, with each dimension representing a rule or condition for grouping objects. For 
example, if we were to cluster fast foods, we could take into account the number of calories they contain, their price, 
subjective ratings of taste, etc. The most straightforward way of computing distances between objects in a multi-dimensional 
space is to compute Euclidean distances. If we had a two- or three-dimensional space this measure is the actual geometric 
distance between objects in the space (i.e., as if measured with a ruler). However, the joining algorithm does not "care" 
whether the distances that are "fed" to it are actual real distances, or some other derived measure of distance that is more 
meaningful to the researcher; and it is up to the researcher to select the right method for his/her specific application. 
 
Euclidean distance. This is probably the most commonly chosen type of distance. It simply is the geometric distance in the 
multidimensional space. It is computed as: 
distance(x,y) = { i (xi - yi)2 }½  
 
Note that Euclidean (and squared Euclidean) distances are usually computed from raw data, and not from standardized data. 
This method has certain advantages (e.g., the distance between any two objects is not affected by the addition of new objects 
to the analysis, which may be outliers). However, the distances can be greatly affected by differences in scale among the 
dimensions from which the distances are computed. For example, if one of the dimensions denotes a measured length in 
centimeters, and you then convert it to millimeters (by multiplying the values by 10), the resulting Euclidean or squared 
Euclidean distances (computed from multiple dimensions) can be greatly affected (i.e., biased by those dimensions which 
have a larger scale), and consequently, the results of cluster analyses may be very different. Generally, it is good practice to 
transform the dimensions so they have similar scales. 
There are other less common distance measures to be mentioned here: 
Squared Euclidean distance: distance(x,y) = i (xi - yi)2  
City-block (Manhattan) distance: distance(x,y) = i |xi - yi|  
 
Chebychev distance : distance(x,y) = Maximum|xi - yi|  
Power distance:. distance(x,y) = ( i |xi - yi|p)1/r  
 
Percent disagreement: distance(x,y) = (Number of xi yi)/ i  

Amalgamation or Linkage Rules 
At the first step, when each object represents its own cluster, the distances between those objects are defined by the chosen 
distance measure. However, once several objects have been linked together, how do we determine the distances between 
those new clusters? In other words, we need a linkage or amalgamation rule to determine when two clusters are sufficiently 
similar to be linked together. There are various possibilities: for example, we could link two clusters together when any two 
objects in the two clusters are closer together than the respective linkage distance. Put another way, we use the "nearest 
neighbors" across clusters to determine the distances between clusters; this method is called single linkage. This rule 
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produces "stringy" types of clusters, that is, clusters "chained together" by only single objects that happen to be close 
together. Alternatively, we may use the neighbors across clusters that are furthest away from each other; this method is called 
complete linkage. There are numerous other linkage rules such as these that have been proposed. 
 
Single linkage (nearest neighbour). As described above, in this method the distance between two clusters is determined by 
the distance of the two closest objects (nearest neighbors) in the different clusters. This rule will, in a sense, string objects 
together to form clusters, and the resulting clusters tend to represent long "chains." 
 
Complete linkage (furthest neighbour). In this method, the distances between clusters are determined by the greatest 
distance between any two objects in the different clusters (i.e., by the "furthest neighbors"). This method usually performs 
quite well in cases when the objects actually form naturally distinct "clumps." If the clusters tend to be somehow elongated or 
of a "chain" type nature, then this method is inappropriate. 
Other Linkage Rules will only be mentioned here by name: 
 
Unweighted pair-group average.  
 
Weighted pair-group average.  
 
Unweighted pair-group centroid.  
 
Ward's method.  

Two-Way Joining 

Introductory Overview 
Previously, we have discussed this method in terms of "objects" that are to be clustered (see Joining (Tree Clustering)). In all 
other types of analyses the research question of interest is usually expressed in terms of cases (observations) or variables. It 
turns out that the clustering of both may yield useful results. For example, imagine a study where a medical researcher has 
gathered data on different measures of physical fitness (variables) for a sample of heart patients (cases). The researcher may 
want to cluster cases (patients) to detect clusters of patients with similar syndromes. At the same time, the researcher may 
want to cluster variables (fitness measures) to detect clusters of measures that appear to tap similar physical abilities.  

Two-Way Joining 
Given the discussion in the paragraph above concerning whether to cluster cases or variables, we may wonder why not 
cluster both simultaneously? Two-way joining is useful in (the relatively rare) circumstances when we expect that both cases 
and variables will simultaneously contribute to the uncovering of meaningful patterns of clusters. For example, returning to the 
example above, the medical researcher may want to identify clusters of patients that are similar with regard to particular 
clusters of similar measures of physical fitness. The difficulty with interpreting these results may arise from the fact that the 
similarities between different clusters may pertain to (or be caused by) somewhat different subsets of variables. Thus, the 
resulting structure (clusters) is by nature not homogeneous. This may seem a bit confusing at first, and, indeed, compared to 
the other clustering methods described (see Joining (Tree Clustering) and k-Means Clustering), two-way joining is probably 
the one least commonly used. However, some researchers believe that this method offers a powerful exploratory data 
analysis tool 

k-Means Clustering 

General Logic 
This method of clustering is very different from the Joining (Tree Clustering) and Two-way Joining. Suppose that you already 
have hypotheses concerning the number of clusters in your cases or variables. You may want to "tell" the computer to form 
exactly 3 clusters that are to be as distinct as possible. This is the type of research question that can be addressed by the k- 
means clustering algorithm. In general, the k-means method will produce exactly k different clusters of greatest possible 
distinction. It should be mentioned that the best number of clusters k leading to the greatest separation (distance) is not known 
as a priori and must be computed from the data (see Finding the Right Number of Clusters).  

Example 
In the physical fitness example (see Two-way Joining), the medical researchers may have a "hunch" from clinical experience 
that their heart patients fall basically into three different categories with regard to physical fitness. They might wonder whether 
this intuition can be quantified, that is, whether a k-means cluster analysis of the physical fitness measures would indeed 
produce the three clusters of patients as expected. If so, the means on the different measures of physical fitness for each 
cluster would represent a quantitative way of expressing the researchers' hypothesis or intuition (i.e., patients in cluster 1 are 
high on measure 1, low on measure 2, etc.).  
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Computations 
Computationally, you may think of this method as analysis of variance (ANOVA) "in reverse." The program will start with k 
random clusters, and then move objects between those clusters with the goal to 1) minimize variability within clusters and 2) 
maximize variability between clusters. In other words, the similarity rules will apply maximally to the members of one cluster 
and minimally to members belonging to the rest of the clusters. This is analogous to "ANOVA in reverse" in the sense that the 
significance test in ANOVA evaluates the between group variability against the within-group variability when computing the 
significance test for the hypothesis that the means in the groups are different from each other. In k-means clustering, the 
program tries to move objects (e.g., cases) in and out of groups (clusters) to get the most significant ANOVA results.  

Interpretation of Results 
Usually, as the result of a k-means clustering analysis, we would examine the means for each cluster on each dimension to 
assess how distinct our k clusters are. Ideally, we would obtain very different means for most, if not all dimensions, used in the 
analysis. The magnitude of the F values from the analysis of variance performed on each dimension is another indication of 
how well the respective dimension discriminates between clusters.  
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Table 7-1 

X Y 
Fertilizer Yield 
(kg/ha) (tons/ha) 

100 2.768 

200 3.460 
300 3.460 
400 4.844 
500 4.498 
600 4.498 
700 5.536 

 
 

Figure 7-1 
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Introduction to statistical regression 
 
In the previous examples of statistical inference, we estimated the mean of a single population and we compared two population 
means. Finally, we might compare r population means, using analysis of variance (which we will skip here). Now we ask whether 
we could improve the analysis if we are able to rank the r populations numerically rather than in unordered categories. 
We can use the analysis of variance to show how wheat yield depends on several different kinds inputs (like irrigation or fertilizer) 
If we wish to consider how yield depends on several different amounts of fertilizer, we define fertilizer application on a numerical 
scale. If we plot the yield Y that follows from various fertilizer applications, a scatter plot similar lo Figure 7-1 might be observed. 
From this scatter plot, it seems clear that fertilizer does affect yield. Moreover, it should be possible to describe how by an 
equation relating Y to X. Estimating an equation is,  equivalent geometrically to fitting a curve through this plot. 
 
This is called the statistical "regression" of Y on X. 
 
As a simple mathematical model, it will be useful as a brief and precise' description, or as a means of predicting the yield Y for a 

given amount of fertilizer X. Initially we restrict the discussion exclusively to how a straight line may 
best be fitted. 
Since yield depends on 
fertilizer, yield is called the 
"dependent variable" or 
"response variable" Y. Since 
fertilizer application is not 
depending on yield, but 
instead is determined 
independently by the 
experiment, we refer to it as an 
"independent variable" or 
"factor," or "regressor" X . 
 
 
Example: Suppose, in a study 

of how wheat yield depends on fertilizer, funds are available 
for only seven experimental observations. So the experimenter sets X at seven different values, taking only one observation Y 
in each case, as shown in Table 7-1. Graph these points, and roughly fit a line by eye in Figure 7-1. Of course it is not done by 
hand, but by the “Trend Line“ function of an EXCEL graph.   
 

Fitting a line 
It is time to ask, more precisely, "What is a good fit?" The answer surely is, "A fit that makes the total error small." One typical 
error (deviation) would be the vertical distance from the observed Y, to the fitted value Ŷi on the line, that is, (Yi - Ŷi).  
We note that this error is positive when the observed Yi is above the line and negative when the observed Yi is below the line. 
1. As our first tentative criterion, consider a fitted line that minimizes the sum of all these errors: 

 
Unfortunately, this works badly. The problem is one of sign; in both cases, positive errors just offset 
negative errors, leaving their sum equal to zero.  
There are two ways of overcoming the sign problem. The first is to minimize the sum of the absolute values 
of the errors:                                                    

 
But perhaps it is not the best solution to the problem, because it pays no attention whatever to the sum of 
distances from the line to the observed points, that it does not force the line to be as close to the points as 
possible.     
As a second way to overcome the sign problem, we finally propose lo minimize the sum of the squares of 
the errors: 

  
This is the famous "least squares" criterion; one of its justifications: Squaring overcomes the sign problem 
by making all error positive and it forces the line to be as close to the points as possible.     
 

The reasoning her is very similar to that in the chapter “Spread of a Distribution” in part 1 of the Handbook 

Lines and Planes; Elementary Geometry  
The definitive characteristic of a straight line is that it continues forever in the same constant direction. In Figure 7-2, we make 
this idea precise. In moving from one point P1 to another point P2, we denote the horizontal distance by ΔX (where Δ means 
change, or difference), and the vertical distance by ΔY. Then the slope30 is defined as: 
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slope = ΔY/ ΔX 
 
The characteristic of a straight line is that this slope remains the same everywhere: slope = ΔY/ ΔX = b (constant). For 
example, the slope between P3 and P4 is the same as between P1 and P2. It is now very easy to derive the equation of a 
line, if we know i t s  slope b and any one point on the line. Suppose that the one point we know its P0 , the Y-intercept; since 
its coordinates, as shown in Figure 4-2 are 0 and a0 and the point is denoted P0 (0,a0). In moving to any other point 

P(X,Y)on the 
line, we may 
write: slope = 
ΔY/ ΔX =b= (Y-
a0)/(X-0). 
 

After 
transformation 

we arrive at the 
equation of a 
line Y=a0+bX, 
where a0 is the 
intercept and b 
the slope. 
 
For planes in a 

3-dimensional 
(X,Y, Z) space, 
we can do the 
same reasoning 
and the final 
equation of a 
plane is  
Y=a0+bX+ cZ, 
since we have 
two slopes b 

and c here. Multi-dimensional planes are mathematically constructed just correspondingly but obviously presentation in a 
sketch is not possible any more. 
 
 
The least squares solution 
The scatter of observed X and Y values from Table 7-1 is graphed again in Figure 7-3. Our objective is to fit a line: Ŷ - a0 + bX 
The geometry of lines and planes, including the concepts of intercept and slope has been reviewed before The fitting of the 
line involves three steps: 
 

 
Step 1: Translate X into deviations from its 
mean; that is, define a new variable x = X-
x,¯ . Measuring x as a deviation from x,¯  will 
simplify the mathematics because the sum 
of the new x values equals zero. 
Step 2: Fit the line Ŷ = a + bX by selecting 
the values for a and b that satisfy the least 
squares criterion; 
select those values of 
a and b that minimize  
 
Since each of the Ŷ 
can be substituted, 
this means minimize: 
 

With the use of calculus which is omitted here and can be reread in any of the textbooks, we arrive at  
 
the result                    and   
  
 
 
 
 
 

Figure 7-2 
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Figure 7-3 
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Step 3: If desired, the regression can 
now be translated back into the original 
frame of reference in terms of the 
original x values: x =(X- x,¯ )   
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Figure 7-4 
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Table 7-2 
 

X Y xi xiYi xi2 Regression Tr.Regression (Y- Ŷ) (Y- Ŷ)2 
100 2.768 -300.000 -830 90000 4.55964 2.92855 -0.16064 0.02580 
200 3.460 -200.000 -692 40000 4.96741 3.33632 0.12357 0.01527 
300 3.460 -100.000 -346 10000 5.37519 3.74410 -0.28421 0.08077 
400 4.844 0.000 0 0 5.78296 4.15187 0.69198 0.47883 
500 4.498 100.000 450 10000 6.19073 4.55964 -0.06178 0.00382 
600 4.498 200.000 900 40000 6.59851 4.96741 -0.46956 0.22048 
700 5.536 300.000 1661 90000 7.00628 5.37519 0.16064 0.02580 

Mean Sums Intercept and slope Σ 0.851 
400.000 4.152 0 1142 280000 a = 4.152 2.521 s2=(1/(n-2))*Σ 0.170 

     b = 0.0041 0.0041 s  0.413 
 
Without mathematical proof, we 
apply the calculation in Table 7-2 
using the values from Table 7-1 and 
obtain the regression equation as Ŷ 
= 4.152 + 0.0041*X  (Formula Ex 7-
1) or after Step3 of the translated 
regression as Ŷ = 2.521 + 0.0041*X  
(Formula Ex 7-2)  and not surprising 
the scatterplot of the Regression 
values will be the trend line if the 
translated regression values would 
be connected (Figure 7-4) 
 
 

Regression Theory  
So far, our treatment of a sample of 

points has only involved mechanically fitting a line. Now we wish to make inferences about the parent population from which 
this sample was drawn. Specifically, we must consider the mathematical model that allows us to construct confidence intervals 
and test hypotheses. 
 

Simplifying Assumptions 
 
Consider again the fertilizer-yield example in the previous chapter. Suppose that the experiment could be repeated many 
times at a fixed level of fertilizer x. Even though fertilizer application is fixed from experiment to experiment, we would not 
observe exactly the same yield each time. Instead, there would be statistical fluctuation of the Y values, clustered about a 
central value. We can think of the many possible values of Y forming a population; the probability distribution of Y for a given x 
we shall call p (Y/x). Moreover, there will be a similar probability distribution for Y at any other experimental level of x. There 
obviously would be great problems in analyzing populations peculiar and unique in their distributions and comparing them.  
 
To keep the problem manageable, therefore, we make several assumptions about the regularity of the populations. We 
assume that: 
1. The probability distributions p(Yi/xi) have the same variance σ2 for all xi. 
2. The means E (Yi) lie on a straight line, known as the true (population) regression line: 
 iii xYE βαµ +==)(  The population parameter α and β specify the line; they are to be estimated from sample information. 
3. The random variables Yi are statistically independent. For example, a large value of Y1 does not tend to make Y2 large; 
that is Y2. is "unaffected" by Y1. 
 
It is useful to describe the deviation of Yi from its expected value or disturbance term ei so that the model alternatively may be 
written as: iii exY ++= βα  where the error term ei has the mean = 0 and the variance of Y that is σ2 

The Nature of the Error Term 
Now let us consider in more detail the "purely random" part of Y, the error or disturbance term ei . Where does it come from? 
Why doesn't a precise and exact value of Yi follow, once the value of x is given? This reasoning is important for all statistical 
data collection. The error may be regarded as the sum of two components: 
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1. Measurement error. There are various reasons why Y may be measured incorrectly. In measuring crop yield, an error may 
result horn sloppy harvesting or inaccurate weighing. If the example is a study of the consumption of families at various 
income levels, the measurement error in consumption might consist of budget and reporting inaccuracies. 
2. Stochastic error occurs because of the inherent irreproducibility of biological and social phenomena. Even if there were no 
measurement error, continuous repetition of an experiment using exactly the same amount of fertilizer would result in different 
yields; these differences are unpredictable, and are called "stochastic" or "random." They may be reduced by tighter 
experimental control —for example, by holding constant soil conditions, amount of water, etc. But complete control is 
impossible —for example, seeds cannot be duplicated. 
 
In the social sciences, controlled experiments usually are not possible. For example, an economist cannot hold U.S. national 
income constant for several years while he examines the effect of interest rate on investment. Since he cannot neutralize 
extraneous influences by holding them constant, his best alternative is to take them into account explicitly, by regressing Y on 
x and the extraneous factors. This is a useful technique for reducing stochastic error; it is called "multiple regressions" and is 
discussed later. ̂ 

The Gauss-Markov Theorem 
The major justification for using the least squares method to estimate a linear regression is the following: 

This theorem is important because it requires no assumption about the shape of the distribution of the error term. No proof will 
be given here, please refer to the textbooks.  
It must be emphasized that the Gauss-Markov theorem is restricted; it only applies to estimators that are both linear and 
unbiased. It follows that there may be a nonlinear estimator that has smaller variance than the least squares estimator. For 
example, to estimate a population mean, the sample median is a nonlinear estimator that has smaller variance than the 
sample mean for certain kinds of non-normal populations as we mentioned before. 

The distribution of β
)   

Now we ask about the shape of the distribution of β
)

. Let us add (for the first time) the strong assumption that the Yi are 

normal. Since β
)

  is a linear combination of the Yi, it follows that β
)

  also will be normal. But even without assuming that the 

Yi are normal, we know that, as sample size increases, the distribution of β
)

  usually will approach normality. This can be 
justified by a generalized form of the central limit theorem.  Our objective is to develop a clear intuitive picture of how this 
estimator varies from sample to sample.  

Confidence intervals and hypothesis tests for β 

Standard Error of β  
Now that we have established the normality of β

)
 , statistical inferences about β is in order. But first we have one remaining 

problem: the variance σ2  about the population line is unknown and must be estimated. A natural estimator is to use the 
deviations about the fitted line: 
 
 
 

 
where Ŷi is the fitted value on the estimated regression line, that is  
.  
s2 often is referred to as "residual variance". When s2 is substituted for σ2 we obtain the estimated standard error  
 
and we can make statistical inferences. 

Confidence Intervals 
We can derive the 95% confidence interval for β

)
easily, arriving at a result familiar from Interval estimation in the Handbook 

part 1 

βββ )
)

st 025.±= which generates a 95% confidence interval for the slope after substituting the above formula, 

Gauss-Markov Theorem 
Within the class of linear unbiased estimators of β, the least squares estimator β

)
 has minimum variance (is most 

efficient). 
Similarly, α)  is the minimum variance estimator of α. 

ii xY βα
)))

+=  

2/ ∑= ixssβ
)  
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2
025. / ∑±= ixstββ

)
where the degrees of freedom for t are, as always, the same as the divisor in s2 : d.f. = n-2. 

Using a similar argument for the intercept, we could easily derive: nst /025.±= αα )
 

 
Finally we note that α) and β

)
 are normal and so the 95% confidence interval for the mean μ0 
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 (Formula 7-3) and the predicting a single observed Yo, once again the best estimate is the 

point on the estimated regression line above mean μ0 ,in other words, the best point prediction for Yo 
=+= 00 xY βα

)))
0µ)  

When we try to find the interval estimate for Yo, we will face all the problems involved in the interval for the mean μ0.  And we 
have an additional problem because we are trying to estimate only one observed Y, rather than the more stable average of all 
the possible Y’s. Hence, to the previous variance, we now must add the inherent variance σ2 of an individual Y observation. 
So the 95% prediction interval for an individual Y observation is 

11. 2

2
0

02500 ++±=
∑ ix

x
n

stY µ)  (Formula 7-4) 

This is quite an amount of formulas at a time, but the estimates of predictions for regression functions and confidence intervals 
is elementary for understanding and applying the regression approach in statistics  
 

Example of Interval estimates 
In the previous section, we considered the broad aspects of the model namely, the position of the whole line, remember there 
were several assumed populations (determined by α and β). In this section, we shall consider two narrower problems: 
 

(a) For a given value xo, what is the interval that will predict the corresponding mean value of Yo  For example, in our 
fertilizer problem, we may want an interval estimate of the mean yield resulting from the application of 550 kg of 
fertilizer. (Note that we are not deriving an interval estimate of mean yield by observing repeated applications of 
fertilizer; in that case, we could apply the simpler technique of estimating a population mean with the sample mean) 
Instead we are observing only seven different applications of fertilizer, clearly a more difficult problem.) 

 
(b) What is the interval that will predict a single observed value of Yo (referred to as the prediction interval for an 

individual Yo). Again using our fertilizer example, what would we predict a single yield to be from an application 550 
kg of fertilizer? This individual value clearly is less predictable than the mean value' in (a). We now consider both in 
detail. 

 
We will apply the formulas to the fertilizer example and the data from Table 7-2 and start to find a 95% interval for 
  

(a) The mean wheat yield that we would obtain if we planted many plots (μ0). 
 

(b) The wheat yield on just one plot (Yo): 
 
We simply start to calculate: 
xo  = Xo — x,¯  
  = 550 - 400 = 150 and substitute it into the equation of the estimated regression line of  
 
Formula Ex 7-1: 0µ) = Ŷ0 = 4.152 + 0.0041*150 =  4.767  This is the regression equation 
 
(a) For an interval estimate for μ0, substitute the above value into Formula 7-3 along with s2 and  

from Table 7-2: 
 
 
 
 
 

 
 
 
(b) For an interval estimate for Yo,  yields the same calculation except for an extra 1 under the square-root sign  
 

 
 
 

2
ix∑  

280000
150

7
13)2.571(0.414.767μ

2

0 +±=  

534.1±= 4.767μ0  
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280000
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7
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This interval is almost 50% wider than (a), which shows how much more difficult it is to predict an individual observation 
than a mean. 
 
 

The above calculated example 
is for one observation xo = 550. 
The relationship of prediction 
and confidence intervals is 
shown in Figure 7-5. The 
combined sources of error in a 
confidence  intervals for the 
mean are shown in yellow, the 
wider, blue bands gives the 
prediction intervals for individual 
Y observations. Note how both 
bands expand  as xo moves 
farther away from its central 
value (the mean) this reflects 
the fact xo2 appears in both 
variances. This example gives 
reason for some general 
remarks about predictions 
based on statistical regression.  
 
 
 
 

 

Dangers of extrapolation 
  
We emphasize that, in Formulas (7-3) and (7-4), xo may be any value of x. If xo lies among the observed values x1 . . . xn, the 
process is called interpolation.  If x0 is out beyond the observed values xl . . . xn, then the process is called extrapolation. The 
techniques developed in previous section may be used for extrapolation, but only with great caution, as we shall see. 
There is no sharp division between safe interpolation and dangerous extrapolation. Rather, there is continually increasing 
danger of misinterpretation as x0 gets further and further from its central value. 

Statistical Risk 
We emphasized in the previous section that prediction intervals get larger as x0 moves away from the centre. This is true, 
even if all the assumptions underlying our mathematical model hold exactly. 

Risk of Invalid Model 
In practice, we must recognize that a mathematical model is never absolutely correct. Rather, it is a useful approximation. In 
particular, we cannot take seriously the assumption that the population means are strung out in an exactly straight line. If we 
consider the fertilizer example, it is likely that the true relation increases initially, but then bends down eventually as a "burning 
point" is approached, and the crop is overdosed. In the region of interest, from 0 to 700 kg, the relation is practically a straight 
line, and no great harm is done in assuming the linear model. However, if the linear model is extrapolated far beyond this 
region of experimentation, the result be comes meaningless. In such cases, a nonlinear model should be considered  
 

Concluding observations 
Two points warrant emphasis. First, most of the theory of this section and, in particular, the Gauss-Markov justification of least 
squares requires no assumption of normality of the error term. The one exception occurs when the normality assumption was 
required only for small sample estimation and this because of a quite general principle that small sample estimation requires a 
normally distributed parent population to strictly validate the t distribution. But even here, t is often a reasonably good 
approximation in non-normal populations. 
 
Second, we have assumed that the independent variable x has taken on a given set of fixed values (for example, fertilizer 
application was set at certain specified levels). But in many cases, x cannot be controlled in this way. For example we are 
examining the effect of rainfall, we must recognize that x (rainfall) is a random variable that is completely outside our control. 

167.2±= 4.767Y0  

Figure 7-5 

Yield by Fertilizer + Regression + Confidence Intervals

0.50

1.50

2.50

3.50

4.50

5.50

6.50

7.50

0 100 200 300 400 500 600 700 800

Fertlizer (kg/ha)

Yi
el

d 
(to

ns
/h

a)

Regression Lower μo Upper μo Lower Yo Upper Yo
 



    

Compiled by Klaus Röder Page 
Berater - Consultant 
 

292013-06-18 

Table 7-3 

X Y Z 
Fertilizer Yield Rainfall 
(kg/ha) (tons/ha) (Inches) 

100 2.768 10 
200 3.460 20 
300 3.460 10 
400 4.844 30 
500 4.498 20 
600 4.498 20 
700 5.536 30 

 
 

The surprising thing is that most the findings of this section remains valid whether x is fixed or a random variable, provided 
that we assume that: 
 
σ2 (and α and β) are independent of x, amd the error term e is statistically independent of x 
 
This greatly generalizes the application of the regression model  

Multiple Regression 

Introduction 
  
Multiple regression is the extension of simple regression, to take account than one independent variable X. It is obviously the 
appropriate 
Technique when we want to investigate the effects on Y of several variables simultaneously. Yet, even if we are interested in 
the effect of only one variable, it usually is wise to include the other variables influencing Y in a multiple regression analysis, 
for two reasons: 

1. To reduce stochastic (hazard, random) error  
2. Even more important, to eliminate bias that might result if we just 

ignored a variable that substantially affects Y. 
 
Example: Suppose that the fertilizer and yield observations in our continuous 
were taken at seven different agricultural experiment stations across the 
country. If soil conditions and temperature were essentially the same in all 
these areas, we still might ask whether part of the fluctuation in Y (i.e., the 
disturbance term e) can be explained by varying levels of rainfall in different 
areas. A better prediction of yield may be possible if both fertilizer and rainfall 
are examined. The observed levels of rainfall are therefore given in Table 7-3, 
along with the original observations of yield and fertilizer. 
 

The mathematical model 
Yield Y now is to be regressed on the two independent variables, or "regressors": fertilizer X and rainfall Z. Let us suppose 
that the relation ship is of the form:  

iiii ezxY +++= γβα  
Geometrically, this equation is a plane in the three-dimensional space, with the assumptions about ei the same as before. β is 
interpreted geometrically as the slope of the plane as we move in the x-direction, keeping z constant. Similarly, γ is the slope 
of the plane as we move in the y-direction, keeping x constant. The least squares estimation is derived as for the simple linear 
regression. 
 
The computer calculation leads to the results: 
 
Yield = 1.944 + 0.003 Fertilizer + 0.058 Rainfall 
With       (Formula Ex 7-3) 
Standard Errors 
  0.0004    0.0107 
t-values  6.532   5.401 
95% CI  0.001   0.030 
 
 
Let us consider some practical theoretical recommendations for the practical use of multiple regression 

How many regressors should be retained? 
For a Ho hypothesis (fertilizer does not improve yield, rainfall does not improve yield) the t ratios (t for rainfall = .833/.15 = 
5.40)2 for fertilizer and rainfall would lead us to reject Ho at 5% level to use the same example. We therefore should retain 
fertilizer and rainfall as statistically discernible variables (or, to use the traditional phrase, "statistically significant variables"); in 
this case, there are no problems. 
 
But now suppose that we had weaker data (perhaps because of a smaller sample); accordingly, suppose that the standard 
error for rainfall Z was .55 (instead of .15). Then the t ratio would be t = .833/.55 = 1.51, which does not let us reject Ho at the 
5% level. If we use this evidence to actually accept Ho (no effect of rainfall), and thus drop rainfall as a regressor, we may 
encounter the same difficulty that we discussed before in hypothesis testing. Since this is so important in regression analysis, 
                                                           
2 We have cut short the comparison of t-values. You would have to consult a table of Student’s t critical points to see that the Prob-value for a probability of 
<0.005  and 7 d.f. would be 3.499, so a value of 5.40 would lead to reject the Ho hypothesis, a value of  1.51 would not   
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let us review the argument briefly. 
 
Although it is true that a t ratio of 1.51 for rainfall Z is statistically indiscernible, this does not prove that there is no relationship 
between Z and Y. It is easy to see why. We have strong biological grounds for believing that yield Y is positively related to 
rainfall Z. In as in (Formula Ex 7-3), this belief is confirmed by the positive coefficient y = .058. Thus our statistical evidence is 
consistent with our prior belief, even though it is a weaker confirmation than we would like. To actually accept the null 
hypothesis, and to conclude that Z does not affect Y, would be to contradict directly both the (strong) prior belief and the 
(weak) statistical evidence We would be reversing a prior belief, even though the statistical evidence weakly confirmed it. And 
this would remain true for any positive t ratio although, as t became smaller, our statistical confirmation would become weaker. 
Only if y is zero or negative do the statistical results contradict our prior belief. 
 
It follows from this that, if we had strong prior grounds for believing that Z is related positively to Y, Z should not be dropped 
from the regression equation; instead, it should be retained, with all the pertinent information on its confidence interval, t ratio, 
etc. 
 
On the other hand, what if our prior belief is that Ho is approximately true? Then the decision to drop or retain a variable would 
be; different. For example, a weak observed relationship (such as t = 1.51) would be in some conflict with our prior expectation 
of no relationship. But it is so minor a conflict that it is easily explained by chance (Prob-value <.01). Hence, resolving it in 
favour of our prior expectation and continuing to use Ho as a working hypothesis might be a reasonable judgment. Under 
these circumstances, this regressor would be dropped from the equation. 
 
In the case of regression, there is another argument that may lead a statistician with very weak prior belief to accept Ho when 
the test yields a statistically indiscernible result: it keeps the model simple, and conserves degrees of freedom to strengthen 
tests on other regressors. 
 
We conclude once again that classical statistical theory alone does not provide absolutely firm guidelines for accepting Ho; 
acceptance must In based also on extra-statistical judgment. Thus, prior belief plays a key role not only in the initial 
specification of which regressors should be in the equation, but also in the decision about which ones should be dropped m 
the light of the statistical evidence, as well as in the decision on how the model eventually will be used. 
 
Prior belief plays a less critical role in the rejection of a hypothesis but it is by no means irrelevant. Suppose, for example, that 
although you be believed Y to be related to three variables, you didn't really expect it to related to a fourth; someone had just 
suggested that you "try on" a fourth at a 5% level. This means that if Ho (no relation) is true, there is a 5% chance of ringing a 
false alarm (and erroneously concluding that a relation does exist). If this is the only variable that is "tried on," then this is a 
risk that you can live with. However, if many similar variables are included in a multiple regression by someone who is "bag-
shaking" (i.e. trying on everything in sight), then the chance of a false alarm increases dramatically. Of course, this risk can be 
kept small by reducing the level for each t test from 5% to 1% or less. This has led some statisticians lo suggest a 1% level 
with the variables just being "tried on," and a 5% level with the other variables that are expected to affect Y. 
 
To sum up, hypothesis testing should not be done mechanically. It requires: 
 
1. Good judgment and good prior understanding of the model being tested. 
 
2. An understanding of the assumptions and limitations of the statistical techniques. 

Interpretation of regression: "Other things being equal” 
The coefficients in a linear regression model have a very simple but important interpretation, which we shall now consider.  
 

Simple Regression Reviewed 
Recall the simple regression model : 

xY βα +=   
 
(In this section we will ignore the error term e, since we are interested in interpreting βfor models with or without a stochastic 
error term.) It often is very useful to interpret β as 
 
β = increase in Y if x is increased by one unit 
 
For example, in the relation of wheat yield Y to fertilizer x, β is the increase in yield when fertilizer is increased one kg (called 
"marginal physical product" of fertilizer 
 
To appreciate the linear model, it is useful to contrast it with a more complicated model, for example, the quadratic model: 
 
Y = a + βx + γx2 
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When the marginal product of x is calculated as before, by increasing x one- unit, then: I his case, the marginal productivity of 
x is no longer simply the coefficient β. It also involves the coefficient γ, and the level xo. Thus, a major vantage of the linear 
model is that β has such a clear and direct interpretation 

Multiple Regression 
Consider again the multiple regression model: 
 

zxY γβα ++=  
 
For example, wheat yield Y may depend on both fertilizer x and rainfall z. The interpretation of β now is: 
 
β= the increase in Y if x is increased one unit, while z is held constant 
 
For the general linear model: 

kk xxxY βββα ++++= ..2211  
 
It may be confirmed that the interpretation of each coefficient is similar: 
 
βi =the increase in Y if xi is increased one unit, while all other x variables are held constant 
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Factor Analysis 

The basic idea of the factor analysis  
 
In economic and social sciences one has to often to deal with indicators with a high degree of complexity, showing terms and 
multi relationships which cannot be expressed  simply by an individual variable, whose values were determined by a question 
of a questionnaire or by another simple measurement.  
Terms like „Creativity" , „Intelligence" , and „Qualification" or also apparently simpler terms like „Conjuncture" and „Living 
Standard" represent in each case for the expert a whole theory with a referred sentence of variables, which should be 
regarded in an appropriate representation of these terms. 
 In the empirical research such terms must be usually divided into many individual variables, because it is generally not 
possible to seize them appropriately by only one. The factor analysis follows this basic idea, goes however exactly the 
opposite way: Starting point of a factor analysis is a multiplicity of variables, from which one does not know a priori whether 
and in which way they have to do something with our terms or indicators.  
With the factor analysis it is thought to be determined, whether in the examined variables  there are groups of variables 
present, which can be identified with the terms, indicators or “background variables" like for examples to Example „ Creativity" 
, „Intelligence" , and „Qualification". Such background variables are called factors in the context of the factor analysis. It is the 
goal of each factor analysis, to reduce the high degree of complexity, represented by the multiplicity of variables. Like this it is 
thought to make them interpretable and manageably by making these variables represented by as few a factors as possible, 
which lay underneath the many heterogeneous and presumably related original variables. 
 

 An example: Study on premature infants  
 
In n this introduction all steps of the factor analysis will be described by an example3, which comes as a medical-psychological 
investigation another example in the WBT for an urban earthquake risk index.   
The definition characteristic for a premature infant is not the length of the gestation t, but the birth weight of the child: Babies 
with a birth weight of < 1,500 g are considered as premature. For these children at the birth time different data were raised. In 
addition the children are observed and examined in different annual intervals in neurological and psychosocial context. It is 
therefore a longitudinal study. The analysis of the relationship between premature infant data on the one hand as well as 
neurological and psycho-social factors on the other hand became more important because of the medical development of the 
last decades, because at present approx. 65% of the premature infants survive, while in former times only approx. 15% did. 
This is due to stronger impact of intensive medicine development which probably has the price of a subsequent increased 
portion of neurological and psycho social disturbances in the child’s development. Apart from other questions with the 
investigation the group of researchers was interested whether there is a connection between certain prenatal data on the one 
hand and the development of intelligence on the other. To this purpose all premature infants were submitted to an 
investigation in its sixth year, whose results are held in 11 variables measuring the psycho-social development, like Columbia 
Mental Maturity Scale (http://psychology.wikia.com/wiki/Columbia_Mental_Maturity_Scale) . We will not describe in detail the 
11 variables because the purpose of this section is to show how factor analysis works and not to find a solution to the briefly 
described problem.  

The model of the factor analysis  
 
Generally, neither the kind nor the numbers of factors are well-known in advance. For a didactical reason here the factors and 
their (possible) existence are communicated here, although they would be discovered as a result of the factor analysis. Thus 
the model of the factor analysis can be more easily described and reconstructed. Behind the 11 variables mentioned exist or 
(possibly) can be described the two following factors:   

1. General intelligence (AI) 
2. Linguistic intelligence (SI)  

                                                           
3 Veelken, Norbert (1992): Entwicklungsprognose von Kindern mit einem Geburtsgewicht unter 1501 g. Eine regional repräsentative Studie über 371 Kinder. 
Habilitationsschrift Universität Hamburg. 

http://psychology.wikia.com/wiki/Columbia_Mental_Maturity_Scale
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This means that these two factors stand behind the eleven variables and it also means that they determine the variables and 
explain them in a scientific sense. Thus the connection between the factors and the variables - similar as with a regression 
analysis – can be described by a system of equations. If each of the eleven sample variables can be explained by the two 
Factors then an equation can be formulated for each variable, which describes this connection.  
For the first variable the equation could reads as follows:  
 
Var1 = a1 · AI + a2 · SI + Uvar1 
 
Directly the similarity with a regression equation is noticeable: The factors AI and SI are to be regarded as explaining variables 
(predictors), by which the (dependent) variable Var1 can be explained. The coefficients a1 and a2 correspond to the 
regression coefficients of a regression equation, and that third factor, Uvar1, corresponds to the residuals (or the errors) of an 
regression equation.  
 
This error term must be taken up therefore to the equation, because generally it is not to be expected that the variable which 
can be explained (in this case Var1) completely by the remaining factors (in this case thus AI and SI is explained). Called in 
the factor analysis the error term (Uvar1), which is the remainder not explained by the factors which is called: “single residual 
factor”, The two other factors AI and SI become the “common factors” because they are used for the explanation of each 
variable contained in the model. This does not exclude that individual “common factors”, for different variables have only very 
small explanation content and thereby have only a very small influence. A small influence of a factor corresponds in an 
accordingly small value of the factor coefficient (a1 and/or a2).  
The factors (in this example thus AI and SI) are not, as said before, known before but are determined by the factor analysis. 
The thought underlying the computation of factors is the following (simplifying here the rather partially quite complicated 
mathematical procedure): 
First linear combinations of the observed variables are formed. For variables, which exhibit high correlation with another 
variable, it is assumed that have a common factor. By contrast variables, which correlate only weakly with one another, it is 
assumed that they do not have a factor in common. For the concrete different processes of estimation there are various 
methods of determination of the factors at the disposal. 
in principle however all procedures determine  the coefficients ci of the following equation, which characterizes and computes 
the relationship  for the first factor AI.  
AI = c1 · Var1 + c2 · Var2 +… + c11 · Var11  
 
According to this equation it is formally possible that all eleven variables of the sample contribute to the explanation of the 
factor AI (general intelligence). The goal and the hope of the factor analysis consist however in that the factors are only 
determines by one part the variables. Accordingly a successful factor analysis thereby is characterized by the result that the 
multiplicity of the relevant variables in the sample is represented by only few factors. Nothing would be gained by factor 
analysis, if in the available example eleven factors were needed to characterize the relationship because then one also could 
work directly with the eleven variables.  
 
Further a factor analysis can be regarded only then as successful, if the factors determined are meaningfully interpretable with 
regard to their content. This is one of the most difficult problems at the time of the execution of a factor analysis. This problem 
was covered so far thereby that already at the beginning two factors were introduced with the speaking names “General 
intelligence” and “Linguistic intelligence”. The factor analysis as such supplies only factors, which are called factor 1, factor 2 
etc. It is the task of the analyst to interpret and them then if necessary meaningful names give these factors with regard to 
their content meaningful.  
 

The four steps of a factor analysis  
 
Usually the factor analysis is accomplished in four steps. This means however not that the factor analysis always and 
exclusively is accomplished in this way. Rather it is just as feasible with the StatistiXL procedure “Factor Analysis” to 
implement even a very complex factor analysis in only one run. On the other the numerous available options of the procedure 
“Factor Analysis”  make it possible to evaluate the individual steps. The four usual steps of a factor analysis are the following: 
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Correlation Matrix  
They correlation matrix is computed for all variables included into the factor analysis. From the correlation matrix can be read, 
which variables possibly should remain unconsidered because of their very small correlations with the other variables 
 
Factor extraction  
This step is called generally „pulling “or „extracting “of factors. There are different methods of the factor extraction and you 
must you indicate in the dialog fields of the procedure “Extraction”, which extraction method is to be used. Different statistical 
indicators, which can be defined in this step will point out whether the accepted factor model will be suitably is to represent the 
variables in a simple manner.  

Rotation  
The factors found in the second step are frequently difficult to interpret. In order to facilitate the interpretation, one makes itself 
the circumstance that the factors are artificial variables, which can be transformed distortion-free in such a way that they can 
be represented in different coordinate systems. By a suitable transformation one frequently succeeds, to point out more clearly 
out the connection of the factors to the observation variables and thus facilitates the interpretation of the factors.  
 
Factor values 
Although the factors can be regarded in a certain way as complex “background” variables, the substantial goal of a factor 
analysis can be reached in principle without ever determining concrete values of these “background”. On the other hand the 
goal of a factor analysis often consists to determine factors to discover variables not included into the factor analysis. 
Correspondingly you can use factors to explain (absent) variables, not included into the factor analysis. For these purposes 
you can do compute concrete factor values and if necessary store them as variable for further analysis 

In the following sample file “Sol_PremInf.xls” will be used to explain the different steps of FA 

Example: Correlation Matrix  
Select in the “General” Folder the option “Correl/Covar” Matrix to print the correlation matrix of 11 variables. 
 
Table 7-4 Matrix of the coefficients of correlation for the eleven sample variables 
 
Correlation Matrix                     

  Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10 Var11 
Var1 1.000 0.876 0.845 0.867 0.781 0.800 0.848 0.837 0.824 0.826 0.850 
Var2 0.876 1.000 0.844 0.826 0.749 0.779 0.819 0.794 0.802 0.767 0.848 
Var3 0.845 0.844 1.000 0.885 0.693 0.811 0.768 0.775 0.731 0.706 0.806 
Var4 0.867 0.826 0.885 1.000 0.729 0.800 0.791 0.809 0.778 0.755 0.807 
Var5 0.781 0.749 0.693 0.729 1.000 0.636 0.816 0.770 0.785 0.768 0.737 
Var6 0.800 0.779 0.811 0.800 0.636 1.000 0.725 0.728 0.675 0.687 0.746 
Var7 0.848 0.819 0.768 0.791 0.816 0.725 1.000 0.841 0.828 0.842 0.830 
Var8 0.837 0.794 0.775 0.809 0.770 0.728 0.841 1.000 0.759 0.782 0.788 
Var9 0.824 0.802 0.731 0.778 0.785 0.675 0.828 0.759 1.000 0.789 0.772 
Var10 0.826 0.767 0.706 0.755 0.768 0.687 0.842 0.782 0.789 1.000 0.787 
Var11 0.850 0.848 0.806 0.807 0.737 0.746 0.830 0.788 0.772 0.787 1.000 
 
This correlation matrix gives a first overview of , which variables are strongly and which only weakly correlated with one 
another. It is about to recognize that between the variables Var1 and Var2 exists a relative strong correlation. Additionally both 
variables exhibit a relative to high correlation the variable Var3. On the other hand is each of the three variables only clearly 
more weakly also correlates to the variable Var11. If all proven coefficients of correlation would exhibit only very small 
absolute values, it would be a little meaningful, to continue factor analysis, since common factors exist only for such variables, 
which are relatively strongly correlated with one another. (The stronger correlations are marked in yellow, only the lower half of 
the matrix is marked like that because the matrix is symmetric). 
 
Now we must refer to a bit more sophisticated software than we used in the WBT, like SPSS or STATS. So some of the 
results cannot be displayed in stastiXL but are important to understand the possibilities (and limits) of the factor analysis. 
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In the correlation matrix we observe numerous pairs of variables with relatively strong correlation. It is possible nevertheless 
that the calculated correlations appear only coincidentally in the sample, although in the population no connection between the 
variables exists and all coefficients of correlation have a value of zero. With the Bartlett “test on sphericity” the hypothesis can 
be tested, that all coefficients of correlation among the variables in the population have the value 0. The result of this test is 
shown in  
 
Table 7-5 
 

KMO- and Bartlett-Test 

Measure of Sample characteristics after Kaiser-Meyer-
Olkin. 

.897 

Bartlett-Test on sphericity                         Chi-Square 1281.153 
df  55 
Significance after Bartlett  .000 

 
 
The test value of Bartletts test is a Chi square4 value, which is extraordinarily high with 1281. Accordingly a significance value 
of 0,000 is calculated. This is to be interpreted in such a way that the hypotheses, all correlations between the eleven 
variables in the population are 0, can be rejected with a prob-value of 0,000. Turned around one can thus assume at least 
between some the eleven variables also in that Population correlations exist.  
 
Another measure which appears here is the KMO (Kaiser-Meyer-Olkin.) value = .897 
The KMO measure can take at a maximum the value 1. A value in close proximity to 1 is reached if the partial coefficients of 
correlation are very small. Contrary, if  the KMO measure takes a small value with large partial coefficients of correlation. A 
small KMO value indicates that for a factor analysis the variable selection is not well chosen. The KMO measure for the eleven 
variables regarded in this example (here calculated with SPSS) was shown to be .897 in Table 7-5. If one accepts the 
evaluation scheme of the author of this indicator (Kaiser), the value with 0.897 is quite good, so that the selection of the 
variables for a factor-analytic model seems to be quite appropriate. 
 

Evaluation of KMO after Kaiser [39] 

values 0,9 to 1.0 marvellous 
0,8 to under 0,9 meritorious 
0.7 to under 0,8 middling 
0.6 to under 0,7 mediocre 
0,5 to under 0,6 miserable 

under 0,9 unacceptable unacceptable 

 
Before you finally accept the selected model, you should regard still the MSA values, which are displayed in the main 
diagonals the anti-image correlation matrix which is also the basis of the KMO (not displayed here). MSA is the abbreviation 
for Measure of Sampling Adequacy. The MSA values are in principle computed exactly like the straight descriptive KMO 
measure, with the difference that it refers only in each case to one variable instead of on all variables altogether: Without any 
presentation we just state that for the variable Var2 the MSA value is 0.925, which is to be regarded (after the evaluation of 
Kaiser) as marvellous. The smallest MSA value computed in the matrix amounts to 0.808 (Var9) and is still quite good. The 
MSA values do not offer then a cause to exclude one or more variables from the factor-analytic model. 

Factor extraction  
We come back to the factor analysis procedure in stastiXL. In the literature different procedures are suggested to compute the 
factors of a factor analysis, which is usually called factor extraction. Each of these procedures has its pro and cons. The most 
important of these procedures are outlined in brief. The most common, also used by most computer programs, is the 
procedure of the Principal Component analysis (PCA). This procedure often appears as a method on its own. 
                                                           
4 The Chi2 statistic (c2) provides a means of testing the null hypothesis that an observed distribution has the same distribution as an expected. It is calculated 
as the sum of the squares of the difference between the observed and expected frequency, divided by the expected frequency i.e. c2 = S (fi - fi)2/fi where fi is 
the observed frequency and fi is the expected frequency. 
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PCA solves a problem similar to the problem of common factor analysis, but different enough to lead to confusion. It is no 
accident that common factor analysis was invented by a scientist (psychologist Charles Spearman) while PCA was invented 
by a statistician. PCA states and then solves a well-defined statistical problem, and except for special cases always gives a 
unique solution with some very nice mathematical properties. Briefly we will state similarities and differences  
 
Similarities 
PCA and FA have these assumptions in common: 

• Measurement scale is interval or ratio level 
• Random sample - at least 5 observations per observed variable and at least 100 observations. 
• Larger sample sizes recommended for more stable estimates, 10-20 observations per observed variable 
• Over sample to compensate for missing values 
• Linear relationship between observed variables 
• Normal distribution for each observed variable 
• Each pair of observed variables has a bi-variate normal distribution 
• PCA and FA are both variable reduction techniques. If communalities are large, close to 1.00, results could be similar. 

 
PCA assumes the absence of outliers in the data. FA assumes a multivariate normal distribution when using Maximum Likelihood extraction 
method. 
 
Differences 
Principal Component Analysis Factor Analysis 

 
Principal Components retained account for a maximal amount of 
variance of observed variables 

Factors account for common variance in the data  

Analysis decomposes correlation matrix , using elements on the 
diagonals of the correlation matrix 

Analysis decomposes adjusted correlation matrix. The diagonals of 
correlation matrix are adjusted with unique factors 

Minimizes sum of squared perpendicular distance to the component 
axis 

Estimates factors which influence responses on observed variables 

Component scores are a linear combination of the observed 
variables weighted by eigenvectors 

Observed variables are linear combinations of the underlying and 
unique factors 

 
This is not to express however that the procedure of the main component analysis is superior to the remaining procedures. 
With the procedure of the main component analysis linear combinations are formed of the variables. As the first main 
component (= factor) is that combination selected which explains the largest part of the total dispersion of all variables. The 
second main component is accordingly that, which explains the second largest part of the total dispersion of all variables. 
Formally as many main components or factors can be computed as many variables the model contains. 
In the explained variance (Table 7-6) of the tabular overview of the factor extraction, there are also actually as many main 
components, as variables displayed.  
 
In order to receive the following results choose the following the dialog field’s selections: 
 
Descriptive Statistics in folder “General” 
 
Principal Components and Extract All  in “Extraction” 
 
Correlation Matrix and No Rotation in “Rotation” 
 
Scree Plot in “Plots” 
 
 Table 7-6 
Explained Variance (Eigenvalues)                  

Value Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 Factor 11 
Eigenvalue 8.885 0.533 0.250 0.248 0.225 0.202 0.179 0.146 0.130 0.106 0.096
% of Var. 80.769 4.845 2.276 2.257 2.047 1.839 1.625 1.327 1.181 0.961 0.873
Cum. % 80.769 85.614 87.890 90.147 92.194 94.034 95.658 96.985 98.166 99.127 100.000
 
The “Eigenvalue” of a factor indicates, which amount of the total dispersion of all variables of the factor model is explained by 
this factor. From this total dispersion the first factor (during the initial solution with altogether eleven factors) explains to 8.885 
and thus 80.8% of the total dispersion. The second factor explains absolutely 0,533 or 4.9% and so on. 
The column Cum to % indicates the cumulated part of the explained dispersion of the total dispersion. There is to be 
recognized that the first two factors already explain 86% of the total dispersion. Furthermore it is to be observed that the 
additional contribution of any the further factor rapidly decreases. 
 



    

Compiled by Klaus Röder Page 
Berater - Consultant 
 

372013-06-18 

Determination of the number of factors  
It became already clear that it would be senseless to consider as many factors in the model as there are variables. On the 
other hand the table 7-6 shows that the portion of the dispersions explained by the factors for individual variables with 
increasing factor number sinks. So the question arises, how many factors in the model are to be considered. This question 
cannot alone be decided on the basis of a rigid formula (You see the rather weak / flexible frame of the factor analysis). It is 
valid to select the number of factors by which a still sufficiently large part of the dispersions is explained, and at the same time 
a sufficiently large reduction of the complexity is obtained. For this reason we will select the two factors with an Eigenvalue > 
0.5.  
 
Frequently one consults the Screeplot (for the example shown in Figure 7-7). The diagram shows the factors in decreasing 
order of their Eigenvalues The Screeplot has the purpose and serves  (to maintain in the picture) to separate the rubble, which 
accumulates at the foot of the mountain-slope, of those effective factors. Typically the curve of a Screeplot has the following 
characteristics, which can be recognized in Figure 7-7: First the curve drops very steeply, exhibits then rather soon a break, in 
order to drop in the further process only very slowly. As rule of thumb the recommendation is to select the number of factors at 
which the curve exhibits the break. On the basis the Screeplot of this example one would decide for a solution with two 
factors. 
 

Figure 7-6 
 

Factor loadings 
The encountered factors become only valuable for the analyst if 
their relations can be explained  to the particulars variables. For 
this the factor matrix is used, which is shown for the available 
example in Table 7-7. 
  
The factor matrix indicates the coefficients, with which the two 
factors enter into equation for the explanation of each of the 
variables of the factor model. These coefficients are mostly 
called factor loadings; accordingly the name of the matrix as 
factor load matrix. From the matrix itself we read for example for 
the variable Var1 that this can be described by the following 
equation:  
Var1 = 0,947 · F1 - 0,041 · F2  
 
From the absolute size of a factor load you can discover the 
impact / importance of the respective factor on the related 
variable. So factor 2 has a rather high impact on Var5, but only 
a very small one on Var1. In contrast to this Var1 is strongly 
“explained” by the first factor. 
 

Different methods of factor extraction  
For the factor extraction still other methods available than the 
one   the method used so far: Principal component method.  
 
These procedures differ in the approach in which the best model 
adjustment is reached:  
 

Principal component method: This procedure is preset and was used in the example. This method is similar to principal 
component analysis (with which the principal component method should not be confused!) but the factor loadings are 
calculated as the principal component analysis solutions (eigenvectors) multiplied by the square root of the corresponding 
eigenvalue. 
Principal Axis factor analysis: This procedure is quite similarly to the principal component method. The difference to this 
consists in that here squared multiple correlation coefficients are used as estimations of communalities in the diagonal of the 
correlation matrix in a first step. On this basis then suitable estimates of factors and the communalities are computed. These 
become in a second step the starting point of renewed factor estimation and new communalities etc. the iteration process 
continues until the communalities do not change any longer considerably.  
Maximum Likelihood: With this method such parameters are estimated, for those the probability to maximize the observed 
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Table 7-7 
 
Unrotated Factor Loadings 

Variable Factor 1 Factor 2 
Var1 0.947 -0.041 
Var2 0.922 -0.093 
Var3 0.897 -0.307 
Var4 0.916 -0.200 
Var5 0.855 0.329 
Var6 0.848 -0.366 
Var7 0.922 0.191 
Var8 0.899 0.066 
Var9 0.885 0.214 
Var10 0.881 0.242 
Var11 0.908 -0.029 
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Figure 7-8  
 

 
Figure 7-9 
 

(sample) correlation matrix. It is assumed that the sample is of a parent multivariate normal distribution.  
There are several other methods in other statistical packages but will be omitted here 
 

Rotation  
Purpose of the rotation  
In the last step two factors were identified, which according to the criterion of their Eigenvalues have certain explanation 
strength. So far these factors became yet not interpreted, but were purely computational results. The factor analysis remains 
however without force of expression, if the meaning the factors cannot be determined. The factors must thus to be interpreted. 
The interpretation of the factors results from the relation, which they have to the observation variables, for which they should 
represent “background” variables. The relations of the factors to the individual variables can be interpreted from the factor load 
matrix: Large factor loads show a large, small on the other hand a small meaning of a factor for the appropriate variable on. A 
factor is relatively easy to interpret if some variables have a homogeneous meaning among them and have high loadings of 
this factor. On the contrary a meaningful interpretation is very difficult or impossible, if a factor shows relatively strong 
correlation to all variables of the model. Thus for example the factor loading matrix Tab 7-7 shows that the first factor has high 
factor loadings for all eleven variables of at least 0.8.  
So this factor is hard to interpret, because it (apparently) explains many heterogeneous variables. Such a situation is not 
atypical for the first attempt a factor load matrix. To the easier interpretation different procedures have been developed of a 
rotation of the factor load matrix. The term rotation explains itself from that during the transformation the axes of the 
coordinate system, in that the factor loads are represented, are to be turned or rotated. This is demonstrated in the following 
for the two factors, their loadings represented for each value in a two-dimensional diagram (Figure 7-7) 
 

 
Figure 7-7  
 

From the Figure 7-7 The graph of factor scores for Factor 1 
and Factor 2 plots the case-wise factor scores and (can) 
include vectors which indicates the relative directions and 
magnitude (length of line) for the contributions of the variables 
to factors. (These are omitted here because of the many 
vectors to be plotted)  

Rotation methods  
Different rotation methods are available. StatistiXL has three 
procedures available of a orthogonal rotation. With the 
Varimax method the axes are rotated in such a way that the 
numbers of variables with high factor loadings are minimized. 
This is probably the most common procedure, by which above 
all allows to interpret the factors more easily. 
 
Again we use an output from other software because it is not 
available in StatistiXL and it makes Rotation easier to 
understand. 
 

 If we look at the factor loading matrix before and after rotation it would look like this: 
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The interpretation of the factor-diagram before rotation: All variables have positive loadings for factor 1, positive and negative 
loadings for factor 2.The factors would be easy to interpret if all the variables would be grouped to one of the axes and if they 
would be in equal distance from the origin. This would mean that each variables have a high loading for the one factor and a 
low for the other. This is not the case. 
If we could rotate the exes left by about 30 degrees, we would about reach the objective. Graphically the presentation is only 

feasible for two dimensions; mathematically it is possible for n coordinates. 
 

After the Varimax rotation the factor-diagram looks like Figure 7-9 and the results of 
the rotated factor matrix would read like the following Table 7-8. This processing of 
the factor coefficients facilitates the formal interpretation of the factors substantially, 
because a rather clear picture results (Factor loading with less than 0.4 after rotation 
have been cleared):  

Those three variables Var6, Var9, Var10 have only for the factor 2 factor loadings > 
0.4, the other variables only for the factor 1. The only exception is for Var1 which 
shows for both factors the loadings > 0,4 exhibits. The three variables Var6, Var9 
and Var10 represent test results according to the linguistic Intelligence again.  The 
other variables show test results to general intelligence. Factor 1 can be interpreted 
as the “background” variable general intelligence (AI), Factor 2 as linguistic 
Intelligence.  

That is as far as we go in Factor Analysis: A final remark which is also interesting in 
the view how science follows fashion aspects, something which leads the way to 

theory of science, philosophy of science, and also in the sociology of scientific knowledge [41], which is far beyond the scope 
of this handbook: 

A dubious history 

If a statistical method can have an embarrassing history, factor analysis is that method. Around 1950 the reputation of factor 
analysis suffered from over-promotion by a few overenthusiastic partisans. In retrospect there were three things wrong with 
the way some people were thinking about factor analysis at that time. First, some people seemed to see factor analysis as the 
statistical method rather than a statistical method. Second, they were thinking in absolute terms about problems for which a 
heuristic approach would have been more appropriate. Third, they were thinking of overly broad sets of variables ("we want to 
understand all of human personality" rather than "we want to understand the nature of curiosity"). Thus in three different ways, 
they were attempting to stretch factor analysis farther than it was capable of going. In recent decades factor analysis seems to 
have found its rightful place as a family of methods which is useful for certain limited purposes…(from [40]) 

. 

 

 Table 7-8 

Rotated Factormatrix (Varimax) 
  Factor1 Factor2 
Var7 0.81   
Var4 0.71   
Var3 0.68   
Var2 0.68   
Var8 0.59   
Var1 0.55 0.46 
Var11 0.43   
Var5 0.40   
Var9   0.81 
Var6   0.72 
Var10   0.53 
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